Velocity $=\quad$ Speed $+\quad$ Direction

$\mathrm{a}=\mathrm{v}^{2} / \mathrm{r}$
$\mathrm{a}=$ Centripetal acceleration
$\mathrm{v}=$ tangential velocity
$r=$ radius of circle

Example - What is the centripetal acceleration of a 1200 kg car going $24 \mathrm{~m} / \mathrm{s}$ around an $80 . \mathrm{m}$ radius corner?

What centripetal force is needed?
What is the minimum coefficient of static friction required?

Whiteboards:

1. What is the centripetal acceleration if a tuna is going $6.2 \mathrm{~m} / \mathrm{s}$ around a 2.3 m radius corner? (17 $\mathrm{m} / \mathrm{s} / \mathrm{s}$)
2. A Volkswagen can do .650 "g"s ($6.3765 \mathrm{~m} / \mathrm{s} / \mathrm{s}$) of lateral acceleration. What is the minimum radius turn at $27.0 \mathrm{~m} / \mathrm{s}$? $(114 \mathrm{~m})$
$\mathrm{a}=4 \pi^{2} \mathrm{r} / \mathrm{T}^{2}$
$\mathrm{a}=$ Centripetal acceleration
T=Period
$\mathrm{r}=$ radius of circle

Example: A merry-go-round completes a revolution every 7.15 seconds. What is your centripetal acceleration if you are 3.52 m from the center of rotation?

Whiteboard
What should be the period of motion if you want 3.5 " g "s ($34.335 \mathrm{~m} / \mathrm{s} / \mathrm{s}$) of centripetal acceleration 5.25 m from the center of rotation? (2.5 s)

Example

RPM Example: What is the acceleration of a point 32 cm out on a grinding wheel spinning at 1200 RPM?
($5035 \mathrm{~m} / \mathrm{s} / \mathrm{s}-\mathrm{hint}-\mathrm{T}=60 \mathrm{~s} / 1200 \mathrm{Rev}$)

Noteguide for Centripetal Force (Videos 5B)

$\begin{aligned} a= & v^{2} / r \\ & a=\text { Centripetal acceleration } \\ & v=\text { tangential velocity } \\ & r=\text { radius of circle }\end{aligned}$
$\mathrm{a}=4 \pi^{2} \mathrm{r} / \mathrm{T}^{2}$
$\mathrm{a}=$ Centripetal acceleration
T=Period
$r=$ radius of circle

Name

Example: What force is required to swing a 5.0 kg object at $6.0 \mathrm{~m} / \mathrm{s}$ in a 75 cm radius circle?
$\mathrm{F}=\mathrm{mv}^{2} / \mathrm{r}$
$\mathrm{m}=$ mass
$\mathrm{a}=$ Centripetal acceleration
$\mathrm{v}=$ tangential velocity
$r=$ radius of circle
$\mathrm{F}=\mathrm{m} 4 \pi^{2} \mathrm{r} / \mathrm{T}^{2}$
$\mathrm{m}=$ mass
$\mathrm{a}=$ Centripetal acceleration
T=Period
$r=$ radius of circle

Whiteboards:

1. Ice skates can give 420 N of turning force. What is $\mathrm{r}_{\text {min }}$ for a 50 kg skater @ $10 . \mathrm{m} / \mathrm{s}$? (11.9 m)
2. A ride makes a 60 kg small redheaded child go in a 4.1 m radius circle with a force of 470 N . What period? (4.5 s)
3. It takes 35 N of force to make a glob of Jello go in a 2.0 m radius circle with a period of 1.85 seconds What's the mass? What's its flavor? (1.5 kg)

Example 0 - A physics teacher twirls a bucket of water in a 1.12 m radius vertical circle. What is the minimum velocity at the top of the circle that will keep the water in the bucket?

Example 1 - A Ferris wheel "pulls" 0.15 "g"s. What "g" force do they feel at the top and bottom?

Example 2 - A rider moving in a 3.75 m radius vertical circle feels 0.80 " g "s inverted at the top of the circle.
A) How many "g"s is the ride pulling?
B) How many " g "s do they feel at the bottom?

Example 3 - On the Rock-O-Plane a rider feels 1.62 " g "s at the bottom of the ride. What is the ride actually pulling, and what " g " force will they feel at the top?

Example 2 - A 5.00 kg object goes $9.00 \mathrm{~m} / \mathrm{s}$ in a 3.75 m radius vertical circle. Find the force needed at the top, and at the bottom.

Ex4-A 1.15 kg mass moves at a uniform speed in a 3.78 m radius circle on the end of a rod. At the top, the rod is exerting a downward force of 5.02 N on the mass.
a) What is the centripetal acceleration of the mass?
b) What is its speed?
c) What force does the rod exert at the bottom?

Gravity	Weak Nuclear
Electro-Magnetic	

Murray goes on a rant about how the short range nature of the Strong Nuclear (Binds neutrons and protons together) limits the number of stable nuclei (they get too big) and influences the number of neutrons.

$\mathrm{G}=6.67 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2}$
Example 1 - Find the force of gravity between a 0.756 kg stapler, and a 0.341 kg marker that is 1.75 m away?
$r=$ Center to center distance
$\mathrm{m}_{1}=$ One of the masses
$\mathrm{m}_{2}=$ The other mass
$\mathrm{G}=$ Universal gravitation constant
Example 2 - What is the force of gravity between a 1.0 kg mass, and the earth?
$\left(\mathrm{r}=6.38 \times 10^{6} \mathrm{~m}, \mathrm{~m}_{\text {earth }}=5.97 \times 10^{24} \mathrm{~kg}\right)$

Whiteboards:

1. What is the force of gravity between a 5.2 kg shot and a $250 . \mathrm{kg}$ wrecking ball whose centers are 2.45 m distant? $\left(1.44 \times 10^{-8} \mathrm{~N}\right)$
2. Another shot is 1.45 m from the center of a 250 . kg wrecking ball and experiences a force of 1.55 x $10^{-7} \mathrm{~N}$, what is the mass of the shot? (19.5 kg)
3. The moon has a mass of $7.36 \times 10^{22} \mathrm{~kg}$, and a radius of $1.74 \times 10^{6} \mathrm{~m}$. What does a 34.2 kg mass weigh on the surface? $(55.5 \mathrm{~N})$

Noteguide for Orbit problems (Videos 4F)
Name
Use $\quad \frac{m_{s} v^{2}}{r}=\frac{G m_{c} m_{s}}{r^{2}} \quad$ or $\quad \frac{m_{s} 4 \pi^{2} r}{T^{2}}=\frac{G m_{c} m_{s}}{r^{2}}$

These come from these formulas:

$$
F=\frac{G m_{c} m_{s}}{r^{2}} \quad a=\frac{4 \pi^{2} r}{T^{2}}=\frac{v^{2}}{r} \quad F=m a
$$

Example 1 - What is the velocity of orbit 250 miles above the earth?
$\mathrm{r}=6.38 \times 10^{6} \mathrm{~m}+(250 \mathrm{mi})(1609 \mathrm{~m} / \mathrm{mi})=6782250 \mathrm{~m}, \mathrm{me}=5.97 \times 10^{24} \mathrm{~kg}$

Example 2 - What is the radius of a geosynchronous orbit?
$\mathrm{T}=23: 56: 04=23(3600)+56(60)+4=86164 \mathrm{~s}, \mathrm{~m}_{\mathrm{e}}=5.97 \times 10^{24} \mathrm{~kg}$

Fill in the Solutions: (This side is optional)

$\frac{m_{s} v^{2}}{r}=\frac{G m_{c} m_{s}}{r^{2}}$	
Formula:	

\qquad
Johannes Kepler
1571-1630
Tycho Brahe

1. Orbits are ellipses.
(Central body a focal point)

2. Objects sweep equal area in equal time $($ closer $=$ faster $)$

3. Period - Radius

Example 1: What is the radius of a geostationary orbit ($\mathrm{T}=1$ day) if for the moon $\mathrm{T}=27.4$ days, $\mathrm{R}=3.8 \times 10^{8} \mathrm{~m}$

Example 2: Mars is 1.524 AUs from the sun. If our year is 365.26 days long, how many earth days is Mars's year?
\qquad

Example: The on ramp from onto I-5 from Nyberg is $40 . \mathrm{m}$ in radius maybe. What should be the bank angle to go $27 \mathrm{~m} / \mathrm{s}$ around it ?

Whiteboards:

1. One of the Terwilliger curves has a radius of	2. The on ramp from onto I-5 from Nyberg is 40. m in radius maybe. What should be the bank angle 270 m. What is the bank angle for cars to go 29 $\mathrm{~m} / \mathrm{s}$ around it? $\left(18^{\circ}\right)$
to go $45 \mathrm{~m} / \mathrm{s}(101 \mathrm{mph})$ around it? $\left(79^{\circ}\right)$ What about $112 . \mathrm{m} / \mathrm{s}(250 \mathrm{mph})$ around it? $\left(88^{\circ}\right)$ What does the angle approach? $\left(90^{\circ}\right)$	

