Vertical Circle Questions from A5.2

Use the convention that up is positive. For all the forces, label them "up" or "down"

$\begin{aligned} & -0.60 \mathrm{gg} \mathrm{~g} \\ & 1.60 \mathrm{~g} \text { "s } \\ & 8.51 \mathrm{~N} \text { (up) } \\ & 95.5 \mathrm{~N} \text { (up) } \\ & 7.84 \mathrm{~s} \\ & 38.7 \mathrm{~N} \text { (up) } \end{aligned}$	1. a. A carnival ride moves at a constant speed in a vertical circle. If the riders are feeling 2.60 " g "s at the bottom, what " g "s do they feel at the top, and what is the actual centripetal acceleration of the ride in "g"s? (Be sure to answer both questions) b-c: A 5.30 kg mass moves at a constant speed in a vertical circle on the end of a 0.440 m long rod with a velocity of $1.90 \mathrm{~m} / \mathrm{s}$. b. What force in what direction does the rod exert at the top? c. What force in what direction does the rod exert at the bottom? d-e: A 2.60 kg mass moves at a constant speed in a 7.90 m radius vertical circle on the end of a rod. At the top this requires an upward force of 12.3 N . d. What is the period of the mass? e. What force in what direction is required at the bottom?
0.88 g"s 1.12 "g"s -7.14 N (down) 42.5 N (up) $3.78 \mathrm{~m} / \mathrm{s}$ 2.09 N (up)	2. a. A carnival ride moves at a constant speed in a vertical circle. If the actual centripetal acceleration of the ride in " g "s is 0.12 " g "s, what "g"s do the riders feel at the top, what " g "s do they feel at the bottom? (Be sure to answer both questions) $\mathrm{b}-\mathrm{c}$: A 1.80 kg mass moves in a vertical circle at a constant speed with a period of 3.30 s on the end of a 3.80 m long rod. b. What force in what direction does the rod exert at the top? c. What force in what direction does the rod exert at the bottom? d-e: A 2.40 kg mass moves in a vertical circle at a constant speed on the end of a 1.60 m long rod. At the bottom this requires an upward force of 45.0 N d. What is the speed of the mass? e. What force in what direction is required at the top?
$\begin{aligned} & 2.31 \mathrm{~kg} \mathrm{~g} \mathrm{~s} \\ & 1.31 \mathrm{~g} \text { g"s } \\ & 9.43 \mathrm{~N} \text { (up) } \\ & 31.8 \mathrm{~N} \text { (up) } \\ & 2.89 \mathrm{~s} \\ & -2.46 \mathrm{~N} \text { (down) } \end{aligned}$	3. a. A carnival ride moves at a constant speed in a vertical circle. If the riders are feeling 0.31 " g "s inverted at the top, what " g "s do they feel at the bottom, and what is the actual centripetal acceleration of the ride in "g"s? (Be sure to answer both questions) b-c: A 2.10 kg mass moves at a constant speed in a vertical circle on the end of a 0.910 m long rod at $2.20 \mathrm{~m} / \mathrm{s}$. b. What force in what direction does the rod exert at the top? c. What force in what direction does the rod exert at the bottom? d-e: A 1.20 kg mass moves at a constant speed in a vertical circle on the end of a 2.50 m long rod. This requires 26.0 N of upward force at the bottom. d. What is the period of the mass? e. What force in what direction is required at the top?
$\begin{aligned} & 0.62 \text { "g"s } \\ & 1.62 \text { "g"s } \\ & 0.794 \mathrm{~N} \text { (up) } \\ & 28.6 \mathrm{~N} \text { (up) } \\ & 2.12 \mathrm{~s} \\ & 25.1 \mathrm{~N} \end{aligned}$	4. a. A carnival ride moves at a constant speed in a vertical circle. If the riders feel 0.38 " g " s at the top, what is the centripetal acceleration of the ride in "g"s, and what " g "s do they feel at the bottom (Be sure to answer both questions) b-c: A 1.50 kg mass moves at a constant speed of $2.30 \mathrm{~m} / \mathrm{s}$ in a vertical circle with a radius of 0.570 m on the end of a rod. b. What force in what direction does the rod exert at the top? c. What force in what direction does the rod exert at the bottom? d-e: A 1.60 kg mass moves at a constant speed in a 0.670 m radius circle on the end of a rod. At the top this requires an upward force of 6.30 N . d. What is the period of motion of the mass? e. What force in what direction is required at the bottom?
$\begin{aligned} & -1.34 \mathrm{gg} \mathrm{~g} \mathrm{~s} \\ & 2.34 \mathrm{~g} \text { "s } \\ & -15.4 \mathrm{~N} \text { (down) } \\ & 42.9 \mathrm{~N} \text { (up) } \\ & 2.90 \mathrm{~m} / \mathrm{s} \\ & 50.0 \mathrm{~N} \text { (up) } \end{aligned}$	5. a. A carnival ride moves at a constant speed in a vertical circle. If the riders are feeling 3.34 " g "s at the bottom, what " g "s do they feel at the top, and what is the actual centripetal acceleration of the ride in "g"s? (Be sure to answer both questions) b-c: A 1.40 kg mass moves in a vertical circle at a constant speed on the end of a 0.760 m long rod with a period of 1.20 s . b. What force in what direction does the rod exert at the top? c. What force in what direction does the rod exert at the bottom? d-e: A 2.20 kg mass moves in a vertical circle on the end of a rod with a radius of 0.650 m . At the top this requires a downward force of 6.80 N . d. What is the velocity of the mass? e. What force in what direction is required at the bottom?

