Orbit Problems:

Name

1. What is the orbital velocity 3400 m from the center of a $5.6 \times 10^{18} \overline{\mathrm{~kg} \text { asteroid? }(331.4 \approx 330 \mathrm{~m} / \mathrm{s})}$
2. You find that you can orbit at $516 \mathrm{~m} / \mathrm{s} 12,150 \mathrm{~m}$ from the center of a small moon. What is its mass? $\left(4.85 \times 10^{19} \mathrm{~kg}\right)$
3. A satellite orbits a planet at a distance of $7.5 \times 10^{6} \mathrm{~m}$ from the center every 8900 seconds. What is the mass of the planet? $\left(3.2 \times 10^{24} \mathrm{~kg}\right)$
4. What distance from the center of Earth's moon is your orbital velocity $120 \mathrm{~m} / \mathrm{s} ?\left(3.4 \times 10^{8} \mathrm{~m}\right)$
5. What is the period of orbit of a satellite that orbits $1.95 \times 10^{6} \mathrm{~m}$ from the center of Earth's moon? (7730 s)
6. What is the radius of an orbit with a period of $3.16 \times 10^{7} \mathrm{~s}$ around the sun ? $\left(1.50 \times 10^{11} \mathrm{~m}-\mathrm{yep}-\right.$ it's the earth)

Use $\frac{m_{s} v^{2}}{r}=\frac{G m_{c} m_{s}}{r^{2}} \quad$ or $\quad \frac{m_{s} 4 \pi^{2} r}{T^{2}}=\frac{G m_{c} m_{s}}{r^{2}}$
$F=m a$
Useful things to know:
Mass of the Earth
Mass of the Moon
Mass of the Sun
$\mathrm{G}=6.67 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2}$

$$
\begin{aligned}
& 5.97 \times 10^{24} \mathrm{~kg} \\
& 7.35 \times 10^{22} \mathrm{~kg} \\
& 1.99 \times 10^{30} \mathrm{~kg}
\end{aligned}
$$

Which come from: $F=\frac{G m_{c} m_{s}}{r^{2}}$, and $a=\frac{4 \pi^{2} r}{T^{2}}=\frac{v^{2}}{r}$ and

[^0]\[

$$
\begin{aligned}
& 1.738 \times 10^{6} \mathrm{~m} \\
& 6.38 \times 10^{6} \mathrm{~m} \\
& 3.84 \times 10^{8} \mathrm{~m} \\
& 1.496 \times 10^{11} \mathrm{~m}
\end{aligned}
$$
\]

[^0]: Radius of the Moon Radius of the Earth Earth-Moon Distance Earth-Sun Distance

