2. You find that you can orbit at 516 m/s 12,150 m from the center of a small moon. What is its mass? $(4.85 \times 10^{19} \text{ kg})$

3. A satellite orbits a planet at a distance of 7.5×10^6 m from the center every 8900 seconds. What is the mass of the planet? $(3.2 \times 10^{24} \text{ kg})$

4. What distance from the center of Earth's moon is your orbital velocity 120 m/s? (3.4 x 10⁸ m)

5. What is the period of orbit of a satellite that orbits 1.95×10^6 m from the center of Earth's moon? (7730 s)

6. What is the radius of an orbit with a period of 3.16×10^7 s around the sun? $(1.50 \times 10^{11} \text{ m} - \text{yep} - \text{it's the earth})$

Use
$$\frac{m_s v^2}{r} = \frac{Gm_c m_s}{r^2}$$
 or $\frac{m_s 4\pi^2 r}{T^2} = \frac{Gm_c m_s}{r^2}$

Which come from: $F = \frac{Gm_c m_s}{r^2}$, and $a = \frac{4\pi^2 r}{T^2} = \frac{v^2}{r}$ and

Useful things to know:

F = ma