4.1 Newton's Second Law and Weight vs. Mass Questions

(Use $\mathrm{g}=9.81 \mathrm{~N} / \mathrm{kg}$ - round to three digits total)

63.8 N $12.9 \mathrm{~m} / \mathrm{s} / \mathrm{s}$ 16.7 kg 6.51 N $45.9 \mathrm{~m} / \mathrm{s}$	1. a. What is the weight of a 6.50 kg object on earth? b. What is the acceleration of a 2.80 kg object of there is 36.0 N of unbalanced force on it? c. What mass on earth weighs 164 N ? d. What net force would accelerate a 1.60 kg mass from rest a distance of $\mathbf{1 7 . 1} \mathbf{~ m}$ in $\mathbf{2 . 9 0} \mathbf{~ s}$? e. A 15.0 N net force acts on a 4.90 kg mass. If it accelerates from rest, what is the final velocity in 15.0 s ?
$\begin{aligned} & 91.9 \mathrm{~N} \\ & 6.68 \mathrm{~kg} \\ & 638 \mathrm{~N} \\ & 29 \mathrm{~N} \\ & 21.8 \mathrm{~m} \end{aligned}$	2. a. What net force would accelerate a 37.5 kg mass at $2.45 \mathrm{~m} / \mathrm{s} / \mathrm{s}$? b. What mass accelerates at $2.98 \mathrm{~m} / \mathrm{s} / \mathrm{s}$ when a force of 19.9 N acts on it? c. What is the weight on earth of a 65.0 kg boy named Brennen? d. A 58.2 kg mass accelerates from $5.70 \mathrm{~m} / \mathrm{s}$ to $25.3 \mathrm{~m} / \mathrm{s}$ in 3.90 s . What net force acted? e. A net force of 46.7 N acts on a 8.80 kg mass. What distance has it covered from rest when it has reached a speed of $\mathbf{1 5 . 2} \mathbf{~ m} / \mathrm{s}$?
$\begin{aligned} & 65.2 \mathrm{~kg} \\ & 57.6 \mathrm{~N} \\ & 14.5 \mathrm{~kg} \\ & 10.1 \mathrm{~s} \\ & 47.0 \mathrm{~N} \end{aligned}$	3. a. What mass on earth weighs 640 . N? b. What net force would accelerate a 18.0 kg mass at $3.20 \mathrm{~m} / \mathrm{s} / \mathrm{s}$? c. What mass would accelerate at $5.30 \mathrm{~m} / \mathrm{s} / \mathrm{s}$ when there is a net force of 77.0 N acting on it ? d. A net force of 12.5 N acts on a 2.80 kg mass. After what time would the mass reach a speed of $45.0 \mathrm{~m} / \mathrm{s}$ from rest? e. A 7.20 kg mass accelerates from $4.10 \mathrm{~m} / \mathrm{s}$ to $17.8 \mathrm{~m} / \mathrm{s}$ over a distance of $\mathbf{2 3 . 0} \mathrm{m}$. What net force acted?
$\begin{aligned} & \hline 2.22 \mathrm{~kg} \\ & 22.0 \mathrm{~N} \\ & 0.704 \mathrm{~m} / \mathrm{s} / \mathrm{s} \\ & 27.3 \mathrm{~N} \\ & 17.3 \mathrm{~m} \end{aligned}$	4. a. What mass accelerates at $8.75 \mathrm{~m} / \mathrm{s} / \mathrm{s}$ when there is a net force of 19.4 N acting on it? b. What is the weight of a 2.24 kg object on earth? c. What is the acceleration of a 6.12 kg mass if there is a net force of 4.31 N acting on it? d. A 5.10 kg mass accelerates from rest to a speed of $23.8 \mathrm{~m} / \mathrm{s}$ in a distance of 53.0 m . What net force was needed? e. A net force of $14.7 \mathbf{N}$ acts on a 5.80 kg mass. What will be its displacement from rest if it accelerates for 3.70 s ?
$\begin{aligned} & \hline 0.788 \mathrm{~m} / \mathrm{s} / \mathrm{s} \\ & 4.28 \mathrm{~kg} \\ & 5.925 \mathrm{~N} \\ & 3.14 \mathrm{~s} \\ & 102 \mathrm{~N} \end{aligned}$	5. a. What is the acceleration of a 17.0 kg mass if there is a net force of 13.4 N acting on it? b. What mass weighs 42.0 N on earth? c. What net force would accelerate a 1.50 kg mass at $3.95 \mathrm{~m} / \mathrm{s} / \mathrm{s}$? d. A net force of 47.0 N acts on a 16.5 kg mass. In what time will it cover a distance of 14.0 m from rest? e. A 47.0 kg mass accelerates from $3.90 \mathrm{~m} / \mathrm{s}$ to $12.8 \mathrm{~m} / \mathrm{s}$ in 4.10 s . What net force acted?

