P1.1 - Uncertainty -

Any measurement or value in Physics will have an uncertainty. Here's how to estimate that uncertainty:

- Measuring with a ruler: The uncertainty is \pm half the smallest division on the ruler. If you measure something that is 12.4 cm long with a ruler that has mm divisions, then your uncertainty is \pm .5 mm or \pm .05 cm so you would say 12.4 \pm .05 cm
- Using a digital readout: The uncertainty is ± the last digit. If you have an ammeter that reads 1.56 Amps, it would be 1.56 ± .01 Amps.
- Multiple trials of something with random error: You could say that it is the average, ± range/2. If you did 3 trials for the rocket lab, and a rocket stayed up in the air for 5.23, 5.25, 5.12, and 5.36 seconds, you could say that it is 5.24 (the average) ± 0.12 (the range/2, i.e. (5.36-5.12)/2).

Directions: The answers are on the side. (Uncertainties should be rounded to 1 or 2 sig figs, and the number of decimal places in the answer should not exceed the limit of the uncertainty)

1. Adding or subtracting – the uncertainty of a sum or difference is the sum of the uncertainties

25.2 ± 0.7	13.1 ± 0.2	23.12 ± 0.01	24 ± 2	21.3 ± 0.5
6.87 ± 0.03	$+ 12.1 \pm 0.5$	-16.25 ± 0.02	$+ 127 \pm 5$	-21.1 ± 0.1
151 ± 7				

 $0.2 \pm .6??$

2. Multiplying and/or dividing – if y = ab/c, then $\Delta y/y = \Delta a/a + \Delta b/b + \Delta c/c$ (Δ reads uncertainty of) Round uncertainty to two sig figs.

31.6 ± 3.8	5.10 ± 0.2	3.12 ± 0.05	484 ± 2	137 ± 9
3.59 ± 0.15	$x 6.20 \pm 0.5$	$x 1.15 \pm 0.03$	$\pm 12.0 \pm 1$	$\pm 1.78 \pm 0.05$
40.3 ± 3.5				
77.0 ± 7.2				

(These are easy - % uncertainties are fractional uncertainties, so just add the %)

12%
0. What is the percent uncertainty of the area of a rectangle if the length is uncertain by 5%, and the width by 7%
9%
1. What is the percent uncertainty of the volume of a cube if the sides each have a percent uncertainty of 3%?
15%
2. A sphere has a radius with an uncertainty of 5%, what is the percent uncertainty of the

2. A sphere has a radius with an uncertainty of 5%, what is the percent uncertainty of the volume?

3. Powers – if $y = a^n$, then $\Delta y/y = |n\Delta a/a|$ (Δ reads uncertainty of) Round uncertainty to two sig figs.

$(12.6 \pm 1.2)^2$	$(3.4 \pm .1)^3$	$\sqrt{16\pm3}$	$^{3}\sqrt{(343\pm31)}$
159 ± 30.	39.3 ± 3.5	4.00 ± .38?	7.00 ± 0.21

Word problems (the test isn't like these : -)

21.2 ± 1.3 m/s	0. A car goes $45 \pm .5$ m in 2.12 ± 0.11 seconds. What is the speed of the car, and what is the uncertainty of the speed?
$\begin{array}{c} 14.7 \pm .8 \ m^2 \\ .77? \end{array}$	1. What is the area (with uncertainty) in square meters of a rectangular room that measures 3.5×4.2 m where both measurements have an uncertainty of .1 m?
$140.4 \pm 6.0 \text{ cm}$	2. A staircase has 12 steps, each one being $11.7 \pm .5$ cm high. What is the total height of the staircase with uncertainty? (Add twelve together)
1.2 ± 1.3 cm Yes	3. One board is $24.1 \pm .5$ cm long, and another is $25.3 \pm .8$ cm long. How much longer is the second than the first? Could the first possibly be longer?
$452.4\pm7.5\ cm^2$	4. What is the area (with uncertainty) of a circle that is 12.0 cm \pm .1 cm in radius? (area = πr^2 so that is $\pi x r x r$)
$589 \pm 68 \text{ cc}$	5. A sphere has a radius of $5.2 \pm .2$ cm. What is its volume in cubic centimeters? $(V = 4/3\pi r^3)$