P1.1 - Uncertainty -

Any measurement or value in Physics will have an uncertainty. Here's how to estimate that uncertainty:

- Measuring with a ruler: The uncertainty is \pm half the smallest division on the ruler. If you measure something that is 12.4 cm long with a ruler that has mm divisions, then your uncertainty is $\pm .5 \mathrm{~mm}$ or $\pm .05 \mathrm{~cm}$ so you would say $12.4 \pm .05 \mathrm{~cm}$
- Using a digital readout: The uncertainty is \pm the last digit. If you have an ammeter that reads 1.56 Amps , it would be $1.56 \pm .01$ Amps.
- Multiple trials of something with random error: You could say that it is the average, \pm range/2. If you did 3 trials for the rocket lab, and a rocket stayed up in the air for $5.23,5.25,5.12$, and 5.36 seconds, you could say that it is 5.24 (the average) ± 0.12 (the range $/ 2$, i.e. (5.36-5.12)/2).

Directions: The answers are on the side. (Uncertainties should be rounded to 1 or 2 sig figs, and the number of decimal places in the answer should not exceed the limit of the uncertainty)

1. Adding or subtracting - the uncertainty of a sum or difference is the sum of the uncertainties
25.2 ± 0.7
13.1 ± 0.2
23.12 ± 0.01
24 ± 2
21.3 ± 0.5
6.87 ± 0.03
$+12.1 \pm 0.5$
-16.25 ± 0.02
$+127 \pm 5$
-21.1 ± 0.1
151 ± 7
$0.2 \pm .6$??
2. Multiplying and/or dividing - if $\mathrm{y}=\mathrm{ab} / \mathrm{c}$, then $\Delta \mathrm{y} / \mathrm{y}=\Delta \mathrm{a} / \mathrm{a}+\Delta \mathrm{b} / \mathrm{b}+\Delta \mathrm{c} / \mathrm{c}$ (Δ reads uncertainty of) Round uncertainty to two sig figs.

31.6 ± 3.8	5.10 ± 0.2	3.12 ± 0.05	484 ± 2	137 ± 9
3.59 ± 0.15	$\underline{x} 6.20 \pm 0.5$	$\underline{\times 1.15} \pm 0.03$	$\div 12.0 \pm 1$	$\div 1.78 \pm 0.05$

40.3 ± 3.5
77.0 ± 7.2
(These are easy - \% uncertainties are fractional uncertainties, so just add the \%)
$12 \% \quad 0$. What is the percent uncertainty of the area of a rectangle if the length is uncertain by 5%, and the width by 7%
$9 \% \quad 1$. What is the percent uncertainty of the volume of a cube if the sides each have a percent uncertainty of 3% ?
$15 \% \quad$ 2. A sphere has a radius with an uncertainty of 5%, what is the percent uncertainty of the volume?
3. Powers - if $y=a^{n}$, then $\Delta y / y=|n \Delta a / a|$ (Δ reads uncertainty of) Round uncertainty to two sig figs.

$(12.6 \pm 1.2)^{2}$	$(3.4 \pm .1)^{3}$	$\sqrt{ }(16 \pm 3)$	$\sqrt[3]{(343 \pm 31)}$
159 ± 30.	39.3 ± 3.5	$4.00 \pm .38 ?$	7.00 ± 0.21

Word problems (the test inn't like these : -)

$21.2 \pm 1.3 \mathrm{~m} / \mathrm{s}$	0 . A car goes $45 \pm .5 \mathrm{~m}$ in 2.12 ± 0.11 seconds. What is the speed of the car, and what is the uncertainty of the speed?
$\begin{aligned} & 14.7 \pm .8 \mathrm{~m}^{2} \\ & .77 ? \end{aligned}$	1. What is the area (with uncertainty) in square meters of a rectangular room that measures 3.5 x 4.2 m where both measurements have an uncertainty of .1 m ?
$140.4 \pm 6.0 \mathrm{~cm}$	2. A staircase has 12 steps, each one being $11.7 \pm .5 \mathrm{~cm}$ high. What is the total height of the staircase with uncertainty? (Add twelve together...)
$\begin{aligned} & 1.2 \pm 1.3 \mathrm{~cm} \\ & \text { Yes } \end{aligned}$	3. One board is $24.1 \pm .5 \mathrm{~cm}$ long, and another is $25.3 \pm .8 \mathrm{~cm}$ long. How much longer is the second than the first? Could the first possibly be longer?
$452.4 \pm 7.5 \mathrm{~cm}^{2}$	4. What is the area (with uncertainty) of a circle that is $12.0 \mathrm{~cm} \pm .1 \mathrm{~cm}$ in radius? (area $=\pi \mathrm{r}^{2}$ so that is $\pi \mathrm{xrxr}$)
$589 \pm 68 \mathrm{cc}$	5. A sphere has a radius of $5.2 \pm .2 \mathrm{~cm}$. What is its volume in cubic centimeters? ($\mathrm{V}=4 / 3 \pi \mathrm{r}^{3}$)

