IB Physics Data Packet 2009

From TuHSPhysicsWiki

Jump to: navigation, search

Main Page > IB Physics Data Packet 2009

Fundamental Constants
Quantity Symbol Approximate value


Acceleration of free fall
(Earth's surface)

Gravitational constant

Avogadro's constant

Gas constant

Boltzmann's constant

Stefan-Boltzmann constant

Coulomb constant

Permittivity of free space

Permeability of free space

Speed of light in a vacum

Planck's constant

Elementary charge

Electron rest mass

Proton rest mass

Neutron rest mass

Unified atomic mass unit



g

G

NA

R

k

σ

k

ε0

μ0

c

h

e

me

mp

mn

u


9.81 m/s-2

6.67x10-11 Nm2 kg-2

6.02x1023mol-1

8.31JK-1mol-1

1.38x10-23JK-1

5.67x10-8Wm-2K-4

8.99x109Nm2C-2

8.85x10-12C2N-1m2

4πx10-7TmA-1

3.00x108ms-1

6.63x10-34Js

1.60x10-19C

9.110 x 10-31 kg = 0.000549 u = 0.511MeV c-2

1.673 x 10-27 kg = 1.007276 u = 938 MeV c-2

1.675 x 10-27 kg = 1.008665 u = 940 MeV c-2

1.661 x 10-27 kg = 931.5MeV c-2


Physics Data booklet
Equations - Core and AHL
Core AHL

Contents

Topic 1: Physics and physical measurement


If y = a \pm b

Then \Delta y\ = \Delta a + \Delta b

If    y = \frac{ab} {c}

Then \frac{\Delta y}{y} = \frac{\Delta a}{a} + \frac{\Delta b}{b} + \frac{\Delta c}{c}



DP2009T1Vector.GIF


A_H\ = cos\Theta

A_V\ = sin\Theta


Topic 2: Mechanics



s = \frac{u + u}{2}t

s = ut + \frac{1}{2}at^2\

v^2\  = u^2\  + 2as

 F = ma^\

p = mv^\

F = \frac{\Delta p}{\Delta t}

Impulse\ = F\Delta t = m\Delta v

W\ = Fscos\Theta

E_k = \frac{1}{2}mv^2

E_k = \frac{p^2}{2m}

\Delta\ E_p = mg \Delta\ h

power\ = Fv

 a = \frac{v^2}{r} = \frac{4 \pi\ ^2 r}{T^2}


Topic 3: Thermal physics

P = \frac{F}{A}

Q = mc \Delta\ T

 Q\ = mL


Topic 10: Thermal Physics

 PV\ = nRT

W = P \Delta\ V

Q = \Delta\ U + W



Topic 4: Oscillations and waves


 \omega\ = \frac{2 \pi\ }{T}


 x = x_0 \sin\ \! \! \, \omega\ \! \! \, t ; \quad x=x_0 \cos\ \! \! \, \omega\ \! \! \,t


 v = v_0 \cos\ \! \! \, \omega\ \! \! \, t ; \quad v=-v_0 \sin\ \! \! \, \omega\ \! \! \,t



 v = \pm\omega\sqrt{(x_0\ ^2 - x^2)}



 E_k = \frac{1}{2} m \omega^2 (x_0\ ^2 - x^2)



E_{K (max)} = \frac{1}{2} m \omega^2 x_0\ ^2



E_T = \frac{1}{2} m \omega^2 x_0\ ^2



v = f \lambda\



 \frac{n_1}{n_2} = \frac{\sin\ \theta\ \,_2}{\sin\ \theta\ \,_1} = \frac{v_2}{v_1}



 \mathrm{path \ difference} = n \lambda\



 \mathrm{path \ difference} = (n + \frac{1}{2}) \lambda\

Topic 11: Wave phenomena



 f^\prime = f \left (\frac{v}{v \pm\ u_s}\right)  \  \mathrm{moving \ source}




 f^\prime = f \left (\frac{v \pm\ u_0}{v}\right) \ \mathrm{moving \ observer}




\Delta\ \,f = \frac{v}{c} f




 \theta = \frac{\lambda}{b}




\theta = 1.22 \frac{\lambda}{b}




\Iota\ = \Iota_0\ \cos^2 \theta




n \ = \tan \phi



Topic 5: Electric currents



Ve = \frac{1}{2} mv^2


I = \frac{\Delta q}{\Delta t}


R = \frac{V}{I}


R = \frac{\rho L}{A}


P =VI = I^2R = \frac{V^2}{R}


\mathcal{E} = I (R + r)


 R = R_1 \ + R_2 \ +...


\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} +...

Topic 12: Electromagnetic induction



 \Phi = BA \ \cos \theta


\mathcal{E} = Bvl


\mathcal{E} = -N \frac{\Delta \phi}{\Delta t}


\frac{I_s}{I_p} = \frac{V_p}{V_s} = \frac{N_p}{N_s}


I_{rms} = \frac{I_o}{\sqrt 2}


V_{rms} = \frac{V_o}{\sqrt 2}


R = \frac{V_o}{I_o} = \frac{V_{rms}}{I_{rms}}


P_{max} = I_o \ V_o


P_{av} = \frac{1}{2} I_o \ V_o

Topic 6: Fields and Forces



F = G \frac{m_1 \ m_2}{r^2} F = k \frac{q_1 \ q_2}{r^2}
g = \frac{F}{m} E = \frac{F}{q}



F = \frac{q_1 \ q_2}{4 \pi \varepsilon _0 r^2}


F = qvB \sin\ \, \theta


F = BIL \sin\ \, \theta

Topic 9: Motion in fields





\Delta V = \frac{\Delta E_p}{m} \Delta V = \frac{\Delta E_p}{q}
V = - \frac{Gm}{r} V = \frac{kq}{r} = \frac{q}{4 \pi \varepsilon \,_o r}
g = - \frac{\Delta V}{\Delta r} E = - \frac{\Delta V}{\Delta x}





Topic 7: Atomic and nuclear physics


E = m  \, c^2































Topic 13: Quantum physics and nuclear physics


E = h \, f


h \, f = \Phi + E_{max}


hf = h \, f_o + eV


p = \frac{h}{\lambda}


E_k = \frac{n^2 \, h^2}{8 \, m_e \, L^2}


\Delta x \Delta p \ge \frac{h}{4 \pi}


\Delta E \Delta t \ge \frac{h}{4 \pi}


N = N_o e^{- \lambda \imath}


A = - \frac{\Delta N}{\Delta t}


A = \lambda N = \lambda N_o e^{- \lambda \imath}


T_\frac{1}{2} = \frac{\ln 2}{\lambda}

Topic 8: Energy, power and climate change


\mathrm{power} = \frac{1}{2} A \rho v^3


\mathrm{power} = \frac{1}{2} A^2 \rho gv


I = \frac{\mathrm{power}}{A}


\mathrm{albedo} = \frac{\mathrm{total \ scattered \ power}}{\mathrm{total \ incident \ power}}


C_s = \frac{Q}{A \Delta T}


\mathrm{power} = \sigma A \, T^4


\mathrm{power} = e \sigma A \, T^4


\Delta T = \frac{(I_{in} - I_{out}) \Delta t}{C_s}

Personal tools