Name	Example

Funniest Moment in Class

1. A star has a Luminosity of 4.5×10^{26} W, and a peak black body radiation of 520 nm. What is its radius? (8.08 x 108 m)

Tadius: (8.08 x 10 lm)
$$T = \frac{2.40 E - 3}{\lambda}$$

$$T = \frac{2.40 E - 3}{\lambda} = 5.57 6.92 \text{ } 4.5626 = (5.17E - 8) \text{ } 6.92 \text{ } 7.5626 = (5.17E - 8) \text{ } 6.92 \text{ } 7.5626 = (5.17E - 8) \text{ } 7.5626 = (5.17E$$

many parsecs are we from it? (3590 -> 3600 pc)

$$M = 2.5 \log \left(\frac{2.52E-8}{2.35E-14} \right) = 15.0759$$

$$M = 5 \log \left(\frac{3}{2.35E-14} \right) = 15.0759$$

$$M = 5 \log \left(\frac{3}{10} \right) = 3590.59 \text{ Pc}$$

$$0.758-2.3 = 5 \log \left(\frac{3}{10} \right)$$

15.0758-2.3 = 5 log (2)

3. A galaxy is 23 Mpc from us. At what wavelength would we see the 486 nm spectral line or Murrayium from that galaxy. (Use H = 50 km/s/Mpc) (487.863 -> 488 nm)

$$V = HJ$$

 $V = (50 \frac{\text{Km}}{\text{Mic}})^{23 \text{ Mpc}} = 1150 \frac{\text{Km}}{\text{S}}$
 $\frac{1150 \frac{\text{Km}}{\text{S}}}{365 \frac{\text{Km}}{\text{S}}} = \frac{4 \frac{1}{486}}{486} \frac{487.863 \text{ nm}}{487.863 \text{ nm}}$

4. A very strong concertmaster is on top of a 148 m tall tower near a black hole where the gravitational field strength is 5.53x10¹² m/s/s. If another player is making a frequency of 440.0 Hz at the bottom, what frequency does the concertmaster hear at the top? What beat frequency do they hear? (436. Hz, and 4.00 beats per second)

$$\frac{9 \text{ h}}{c^2} = \frac{1}{4}$$

$$\frac{4}{5.53 \text{ E}_{12}(148)} = \frac{1}{440}$$

$$\frac{5.53 \text{ E}_{12}(148)}{(3 \text{ E}_{8})^2} = \frac{1}{440}$$

$$\frac{4}{40}$$

$$\frac{4}{36} = \frac{4}{100} + \frac{4}{100} = \frac{$$

5. A black hole has a mass of 21 solar masses. (The mass of the sun is 1.99x10³⁰ kg.) *Calculate the radius of the event horizon, *Calculate the time it would take a clock 160 km beyond the event horizon to register 60. seconds of elapsed time as we observe it from a great distance. (62 km, 71 s)

$$R_s = 26M = 2(6.67E-11)(21)(1.99E30) = 61942.1 m$$

$$\Delta t = \frac{\Delta t_0}{\sqrt{1 - \frac{k_0}{f}}} = \frac{60s}{\sqrt{1 - \frac{61942.1}{(16.000 + 61947.1)}}} = \frac{70.666}{5}$$