Noteguide for Basic Wave Principles (Videos 12A, B, C)

Video 12A - two important principles:

Principle 1:	Principle 2:

Video 12B - Types of waves:

	Wave moves	Particles move	Examples of
Transverse:			
Longitudinal:			

I have some demos and activities for this in class tomorrow
Video 12C - Wave Calculations - Period, Frequency, Wavelength, and Wave speed

Formula 1:

Formula 2:

	Symbol	What it is	Units
Medium			N/A
Amplitude			Many answers
Wavelength			
Wave speed			
Period			
Frequency			

Example 1: What is the frequency of a wave that takes 0.12 s for the whole wave to pass by?

Example 2: What is the wavelength of an A 440.0 Hz if the speed of sound is $343 \mathrm{~m} / \mathrm{s}$?

Whiteboards:

1. What is the period of a 60. Hz wave?	2. What is the frequency of a wave with a period of 0.003906 s

Noteguide for Reflections (Video 12D)

Occur when:

Examples of reflections:

How to prevent reflections:

Fixed vs. Free ends:

Mirrors:

(b)

Superposition: (Overlapping waves add)
Examples:

Interference:

(a)

(b)

Wavelength rule for constructive interference:	Wavelength rule for destructive interference:

Other Examples:

Video F - Intro to standing waves
Watch the demos of all three kinds first
Draw the next two modes: (from the video)

Harmonic	Both ends fixed	Both ends free	One end fixed
$\mathbf{1}$			
$\mathbf{2}$			
$\mathbf{3}$			

Haha - we will talk in class why they happen. (I try to explain it on the video)

Video G-Part 1 - Calculations

One whole wavelength:

So a quarter wavelength is either:

So count the quarter wavelengths:

\longrightarrow	

Formulas: $L=\frac{n \lambda}{4} \quad v=f \lambda$
Example: This waveform is 8.45 m long. What is the wavelength of the standing wave? If it has a frequency of 30.4 Hz , what is the wave speed?

What is meant by the waveform:
What is meant by the wavelength:

Do all of the examples
This waveform is 45 cm long. What is the
wavelength?
This waveform is 2.42 m long. What is the
wavelength? If it is a sound wave $(\mathrm{v}=343 \mathrm{~m} / \mathrm{s}$),
what is the frequency?
The wavelength is 0.80 m long. What is the length
of the standing wave? (The waveform)
length of the waveform?
If it is a sound wave $(\mathrm{v}=343 \mathrm{~m} / \mathrm{s}$), what is its
frequency

Video G Part 2 - First three modes of vibration
This string is 32.0 cm long, and has a wave speed of $281.6 \mathrm{~m} / \mathrm{s}$. Find the wavelength and frequency for each mode:

	Wavelength	Frequency

What is the pattern of frequencies:

This pipe is 1.715 m long, sound travels at $343 \mathrm{~m} / \mathrm{s}$ along the pipe. Find the wavelength and frequency for each mode:

| | Frequency |
| :--- | :--- | :--- | :--- | :--- |

[^0]This pipe is 1.715 m long, sound travels at $343 \mathrm{~m} / \mathrm{s}$ along the pipe. Find the wavelength and frequency for each mode:

	Wavelength	Frequency	

What is the pattern of frequencies:

Whiteboards:

1. The third harmonic on a flute (both ends open pipe) has a frequency of $480 . \mathrm{Hz}$. How long is the waveform if the speed of sound inside the flute is $335 \mathrm{~m} / \mathrm{s} ?$	2. What is the frequency of the 2nd harmonic on a 0.31 m long pan pipe (One end open, one end closed) where the speed of sound is $343 \mathrm{~m} / \mathrm{s}$

Noteguide for Sound (Videos 12H)
What type of wave is sound:

Name \qquad

Range of human hearing:

Most sound is:

$\mathrm{v}=(\mathbf{3 3 1}+\mathbf{0 . 6 0 T}) \mathbf{m} / \mathrm{s}, \mathrm{T}=$ temperature in ${ }^{\circ} \mathrm{C}$

Example 1 - What is the speed of sound at $20^{\circ} \mathrm{C} ? 42{ }^{\circ} \mathrm{C}$?

Whiteboards:

1. What is the speed of sound in air at $80^{\circ} \mathrm{C} ?$ $(379 \mathrm{~m} / \mathrm{s})$	2. At what temperature in Celsius is the speed of sound $318 \mathrm{~m} / \mathrm{s} ?\left(-21.7^{\circ} \mathrm{C}\right)$

Noteguide for Beats (Videos 12I)

Name

$f_{\text {beat }}=\left|f_{1}-f_{2}\right|$

Examples:

1. I play a pitch of $256 \mathrm{~Hz}(\mathrm{C})$ on my Pennywhistle, and you play a pitch of $384 \mathrm{~Hz}(\mathrm{G})$ on your whistle. What is the beat frequency?
2. If I am playing a pitch of 384 Hz , and I hear a beat frequency of 10.0 Hz , what are the possible other frequencies that are playing?

Whiteboards:

1. What beats do you hear if you play an e 640 Hz with a c 1024 Hz ?
(384 Hz , G in octave below the E)
2. If you are playing an A 440 Hz , and you hear a beat frequency of 20 Hz , what are the other possible frequencies that could be playing? (460 Hz or 420 Hz)
3. The concertmaster is playing an A 440.0 Hz . Another violin hears a beat every 0.20 seconds. What frequency are they playing?
(445.0 Hz or 435.0 Hz)

Video K - Introduction to Doppler (Watch all three videos)

Receding source/observer

Frequency is \qquad
Video L - Feel free to skip the derivation if it does not interest you, but write down what all the variables are in the formulas:

Do Examples 1 and 3. We will not be solving for source or observer speed, but it is extra credit on the test if you want to learn how to do it

Example 1-A car with a 256 Hz horn approaches you at $40.0 \mathrm{~m} / \mathrm{s}$. What frequency do you hear? (3) (use v sound $=343 \mathrm{~m} / \mathrm{s}$)	Example 3-You run at $8.50 \mathrm{~m} / \mathrm{s}$ toward a violinist playing 660 . Hz. What frequency do you hear? (Use $343 \mathrm{~m} / \mathrm{s}$ as the speed of sound)

[^0]: What is the pattern of frequencies:

