Name

Video 12A - two important principles:		
Principle 1:	Principle 2:	
1		

Video 12B - Types of waves:

	Wave moves	Particles move	Examples of
Transverse:			
Longitudinal:			

I have some demos and activities for this in class tomorrow

Video 12C - Wave Calculations - Period, Frequency, Wavelength, and Wave speed

	Symbol	What it is	Units
Medium			N/A
Amplitude			Many answers
Wavelength			
Wave speed			
Period			
Frequency			

Example 1: What is the frequency of a wave that takes 0.12 s for the whole wave to pass by?

Example 2: What is the wavelength of an A 440.0 Hz if the speed of sound is 343 m/s?

1. What is the period of a 60. Hz wave?	2. What is the frequency of a wave with a period of 0.003906 s
3. What is the velocity of a 1.12 m wave with a frequency of 32 Hz?	4. What is the wavelength of a 89.1 MHz FM radio signal? MHz = 10^{6} Hz v = c = 3.00 x 10^{8} m/s (Speed of light)
5. What is the frequency of a sound wave that has a wavelength of 45 cm, where the speed of sound is 335 m/s	6. What is the period of a 12.0 m long radio wave? $v = c = 3.00 \times 10^8$ m/s (Speed of light) (These are EC on the test)

Noteguide for Reflections (Video 12D)

Name

Occur when:

Examples of reflections:

How to prevent reflections:

Fixed vs. Free ends:

Mirrors:

Noteguide for Superposition and Interference (Videos 12E) Name_ Superposition: (Overlapping waves add) Examples:

Interference:

Wavelength rule for constructive interference:	Wavelength rule for destructive interference:

Other Examples:

Name _____

Video F - Intro to standing waves Watch the demos of all three kinds first

Draw the next two modes: (from the video)

Harmonic	Both ends fixed	Both ends free	One end fixed
1			
2			
3			

Haha - we will talk in class <u>why</u> they happen. (I try to explain it on the video)

Video G - Part 1 - Calculations

One whole wavelength:

So a quarter wavelength is either:

So count the quarter wavelengths:

Formulas: $L = \frac{n\lambda}{4}$ $v = f\lambda$

Example: This waveform is 8.45 m long. What is the wavelength of the standing wave? If it has a frequency of 30.4 Hz, what is the wave speed?

What is meant by the **waveform**:

What is meant by the **wavelength**:

Do <u>all</u> of the examples

Noteguide for Standing Waves (Videos 12G, Part 2) Video G Part 2 - First three modes of vibration

Name _____

This string is 32.0 cm long, and has a wave speed of 281.6 m/s. Find the wavelength and frequency for each mode:

This string is 52.0 cm long, and has a wave	Wavelength	Frequency
Fundamental or first harmonic, f_1		
First overtone or second harmonic, $f_2 = 2f_1$		
Second overtone or third harmonic, $f_3 = 3f_1$		

What is the pattern of frequencies:

	, sound travels at 343 m/s alo	.1 .	T' 1/1 1	1 10	C 1 1
I his nine is 1 / 15 m long	cound travels at 3/13 m/s alo	ng the nine	Hind the wavelend	ith and treamer	new tor each mode
	\cdot sound travers at $3+3$ m/s at	ne uie bibe.	. I mu une waveleng	and moute	ic v for cach moue.
	,	0 · · · · · · ·			

This pipe is 1.715 m long, sound travels at	Wavelength	Frequency
A node antinode		
B		
В		

What is the pattern of frequencies:

This pipe is 1.715 m long, sound travels at 343 m/s along the pipe. Find the wavelength and frequency for each mode:

	Wavelength	Frequency
A		
В		
A		
В		
A B		

What is the pattern of frequencies:

1. The third harmonic on a flute (both ends open pipe)	2. What is the frequency of the 2nd harmonic on a 0.31
has a frequency of 480. Hz. How long is the waveform	m long pan pipe (One end open, one end closed) where
if the speed of sound inside the flute is 335 m/s?	the speed of sound is 343 m/s
3. What is the wave speed on a 0.34m long violin string	4. What is the frequency of the 3rd harmonic on a
if the first harmonic has a frequency of 440 Hz?	violin string that is 0.34 m long where the wave speed
If the first narmonic has a frequency of 440 fiz:	is 299.2 m/s
	18 299.2 111/8

Name_____

Range of human hearing:

Most sound is:

v = (331 + 0.60T) m/s, $T = temperature in {}^{o}C$

Example 1 – What is the speed of sound at 20 $^{\circ}$ C? 42 $^{\circ}$ C?

1. What is the speed of sound in air at 80 $^{\circ}$ C?	2. At what temperature in Celsius is the speed of
(379 m/s)	sound 318 m/s? (-21.7 °C)

$f_{\text{beat}} = |f_1 - f_2|$

Examples:

1. I play a pitch of 256 Hz (C) on my Pennywhistle, and you play a pitch of 384 Hz (G) on your whistle. What is the beat frequency?

2. If I am playing a pitch of 384 Hz, and I hear a beat frequency of 10.0 Hz, what are the possible other frequencies that are playing?

winteboards:		
1. What beats do you hear if you play an e 640 Hz with a c 1024 Hz?	2. If you are playing an A 440 Hz, and you hear a beat frequency of 20 Hz, what are the other	
(384 Hz, G in octave below the E)	possible frequencies that could be playing?	
	(460 Hz or 420 Hz)	
3. The concertmaster is playing an A 440.0 Hz. Another violin hears a beat every 0.20 seconds. What		
frequency are they playing? (445.0 Hz or 435.0 Hz)		

Video K - Introduction to Doppler (Watch all three videos)

<u>Receding</u> source/observer

<u>Approaching</u> source/observer

Name _____

Frequency is_____

Frequency is_____

Video L - Feel free to skip the derivation if it does not interest you, but write down what all the variables are in the formulas:

Moving Source	Moving Observer
$f' = f\left(\frac{v}{v \pm u_s}\right)$	$f' = f\left(\frac{v \pm u_o}{v}\right)$
f':	f':
f:	<i>f</i> :
<i>v</i> :	<i>v</i> :
$u_{s:}$	$u_{o:}$

Do Examples <u>1 and 3</u>. We will not be solving for source or observer speed, but it is extra credit on the test if you want to learn how to do it

Example 1 - A car with a 256 Hz horn approaches	Example 3 - You run at 8.50 m/s toward a
you at 40.0 m/s. What frequency do you hear? (3)	violinist playing 660. Hz. What frequency do you
(use v sound = 343 m/s)	hear? (Use 343 m/s as the speed of sound)