Noteguide for Speed - Videos 2A1

Name

2A1 - Calculating Speed

Our First Formula!

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{avg}}=\Delta \mathrm{x} / \Delta \mathrm{t} \\
& \mathrm{~V}_{\text {avg }}- \text { average speed } \\
& \mathrm{x}, \Delta \mathrm{x}- \text { distance } \\
&\mathrm{t}, \Delta \mathrm{t} / \mathrm{m}, \mathrm{f} / \mathrm{s}, \mathrm{mph}, \mathrm{~km} / \mathrm{hr}) \\
&(\mathrm{m}, \mathrm{~cm}, \text { feet, miles, km })
\end{aligned}
$$

- Use math to solve for $\Delta \mathrm{x}$ and $\Delta \mathrm{t}$ (triangle of mystery)
-The units must match!
A car is going $25 \mathrm{~m} / \mathrm{s}$. How far does the car go during the 1.3 seconds it takes you to change songs?

A winch moves a cable 12.5 cm per second. What time will it take to reel in 15 m of cable?

Try these example problems. Don't freak out if you can't immediately get the answer. They are solved in the linked videos that follow the main one, so if you get stuck, just watch the video.

1. How fast are you going if you run 27.0 m in 3.2 seconds? $(8.4 \mathrm{~m} / \mathrm{s})$	2. In what time will a car that is traveling $95.3 \mathrm{f} / \mathrm{s}$ go 13.45 feet? $(0.141 \mathrm{~s})$
3. How far will a bullet traveling $350 \mathrm{~m} / \mathrm{s}$ go in 6.34 seconds? (2200 m)	4. A car traveling $80 . \mathrm{km} / \mathrm{hr}$ will go how far (in meters) in 2.7 seconds? (60 m$)$

\qquad
2A2 - Unit Conversions

```
Distance and time:
1 hr = 60 min = 3600 sec
1 day = 86400 sec
1 km = 1000 m \approx 0.6214 mile
1 mile}=5280\textrm{ft}=1760\mathrm{ yards }\approx1609\textrm{m
1 foot = 12 inches }\approx30.48\textrm{cm
1 cm =2.54 cm (defined)
1 m \approx3.281 ft
1 yard = 3 feet
```


Unit cancellation:

30. mph to ft/s:

Distance and time:
$1 \mathrm{hr}=60 \mathrm{~min}=3600 \mathrm{sec}$
1 day $=86400 \mathrm{sec}$
$1 \mathrm{~km}=1000 \mathrm{~m} \approx 0.6214$ mile
1 mile $=5280 \mathrm{ft}=1760$ yards $\approx 1609 \mathrm{~m}$
1 foot $=12$ inches $\approx 30.48 \mathrm{~cm}$
$1 \mathrm{~cm}=2.54 \mathrm{~cm}$ (defined)
$1 \mathrm{~m} \approx 3.281 \mathrm{ft}$
1 yard $=3$ feet

Try these example problems. Don't freak out if you can't immediately get the answer. They are solved in the linked videos that follow the main one, so if you get stuck, just watch the video.

1. Convert $32 \mathrm{mile} / \mathrm{hour}$ to feet/second (47 f/s)	2. Convert 88.0 feet/second to $\mathrm{mph}(60.0 \mathrm{mph})$
3. Convert $26.82 \mathrm{~m} / \mathrm{s}$ to $\mathrm{mph}(60 \mathrm{mph})$	4. Convert $110 . \mathrm{km} / \mathrm{hr}$ to $\mathrm{m} / \mathrm{s}(30.6 \mathrm{~m} / \mathrm{s})$
5. Convert $132 \mathrm{f} / \mathrm{s}$ to $\mathrm{km} / \mathrm{hr}(144.8 \mathrm{~km} / \mathrm{hr})$	6. Convert $130 . \mathrm{km} / \mathrm{hr}$ to $\mathrm{mph}(80.8 \mathrm{mph})$
7. Convert $90 . \mathrm{mph}$ to $\mathrm{m} / \mathrm{s}(40.2 \mathrm{~m} / \mathrm{s})$	

\qquad

$\underline{\text { 2B - Vector Velocity }}$

Physics Quantities:
 x - Displacement - Distance and direction
 v - Velocity - Speed and direction
 t - Elapsed time

Football-gain loss
Drive vs Reverse In our world, there are two directions + and -

1. A car has a velocity of $-2.4 \mathrm{~m} / \mathrm{s}$ for 36 seconds. What is its displacement in this time, and if it started at a position of +127.0 m , where will it end up?
2. A train starts at a position of -35.1 m and ends at a position of 12.5 m in a time of 13.8 seconds. What was its velocity during this time?
3. A train has a velocity of $-25.2 \mathrm{~m} / \mathrm{s}$ and ends up at a position of -57 m after a time interval of 15 seconds. What was its displacement during this time, and where did it start?

2C - Simple Acceleration

Write down what these quantities are:

Quantity	Formula	Units	What it is called
\mathbf{V}			
\boldsymbol{a}			

Example: A car goes from 0 to $27 \mathrm{~m} / \mathrm{s}$ in 9.0 seconds, what is its acceleration?

Super Confusing Example: A rocket accelerates at 4.5 " g " s . What time will it take to reach the speed of sound (Mach $I=343 \mathrm{~m} / \mathrm{s}$) from rest?

Try these example problems. Don't freak out if you can't immediately get the answer. They are solved in the linked videos that follow the main one, so if you get stuck, just watch the video.

1. A car speeds up from 0 to $21 \mathrm{~m} / \mathrm{s}$ in 5.3 seconds. What is their acceleration? $(4.0 \mathrm{~m} / \mathrm{s} / \mathrm{s})$	2. A train can accelerate at $0.15 \mathrm{~m} / \mathrm{s} / \mathrm{s}$. What time will it take to reach its top speed of $24 \mathrm{~m} / \mathrm{s}$ from rest? (160 s)
3. What is the final speed if a person accelerates from rest at $32 \mathrm{f} / \mathrm{s} / \mathrm{s}$ for 2.7 seconds? ($86 \mathrm{f} / \mathrm{s}$)	4. What is your acceleration if your velocity goes from $35 \mathrm{~m} / \mathrm{s}$ to $20 . \mathrm{m} / \mathrm{s}$ in 4.7 seconds? $(-3.2 \mathrm{~m} / \mathrm{s} / \mathrm{s}-\mathrm{hint}$ - what is the change in velocity?)
5. What is your final velocity if you are going $12 \mathrm{~m} / \mathrm{s}$ and you accelerate at $0.48 \mathrm{~m} / \mathrm{s} / \mathrm{s}$ for the next 16 seconds? $(19.68 \mathrm{~m} / \mathrm{s} \approx 20 \mathrm{~m} / \mathrm{s}$ - hint - you are already going $12 \mathrm{~m} / \mathrm{s}$ - figure out the change in velocity with the formula, and add it to $12 \mathrm{~m} / \mathrm{s}$)	

\qquad

Slope on a position time graph:

Whiteboards:

Keep in mind that when you find the slope, you should use the entire line segment. (i.e. 2.0 seconds, use the entire line from $t=0$ to $t=3.0 \mathrm{~s}$, and find the rise/run for that entire segment.)

1. What is the velocity at $2.0 \mathrm{~s}{ }_{(0.67 \mathrm{~m} / \mathrm{s})}$	2. What is the velocity at $4.0 \mathrm{~s}{ }_{(0 \mathrm{~m} / \mathrm{s})}$
3. What is the velocity at $6.2 \mathrm{~s} ?(2.0 \mathrm{~m} / \mathrm{s})$	

\qquad
Slope of velocity graphs:

What does the slope on a velocity graph mean?

Whiteboards:

Keep in mind that when you find the slope, you should use the entire line segment.

1. What is the Acceleration at 1.15887 seconds? $(1.5$ $\mathrm{m} / \mathrm{s})$	2 . What is the Acceleration at $8.1 \mathrm{~s} ?$
$(-0.50 \mathrm{~m} / \mathrm{s} / \mathrm{s})$	

(In calculus the slope is the derivative)

Area under velocity graphs:

What does the area under a velocity graph mean?

Whiteboards:

"Area under" means the area between the graph and the x-axis. The units of this "area" are meters in this case, so it's not area in a strict sense. Graph areas can have all kinds of different units.

| 1. What displacement between 2 and 4 seconds? (6.0 | (13.5 m$)$ |
| :--- | :--- | :--- |

(In calculus the area under is the integral)

Noteguide for Qualitative Position Graphs - Videos 2I Name

For all of these, state what happens to the velocity, and whether this is + or - acceleration

Noteguide for Qualitative Velocity Graphs - Videos 2J Name

For each of these, what direction is it going? Is it speeding up, or slowing down? State whether the acceleration is + or -

\qquad
2E-Kinematics

$\mathrm{v}_{\mathrm{f}}=\mathrm{v}_{\mathrm{i}}+\mathrm{at}$	x - displacement	(m)
$\mathrm{x}=1 / 2\left(\mathrm{v}_{\mathrm{i}}+\mathrm{v}_{\mathrm{f}}\right) \mathrm{t}$	v_{i} - initial velocity	$(\mathrm{m} / \mathrm{s})$
$\mathrm{v}_{\mathrm{f}}^{2}=\mathrm{v}_{\mathrm{i}}{ }^{2}+2 \mathrm{ax}$	v_{f} - final velocity	$(\mathrm{m} / \mathrm{s})$
$\mathrm{x}=\mathrm{v}_{\mathrm{i}} \mathrm{t}+1 / 2 \mathrm{at}^{2}$	a - acceleration	$(\mathrm{m} / \mathrm{s} / \mathrm{s})$
	$\mathrm{t}-$ time	(s)

(write down the names I give them, like "No X", "No a" etc.)
Example 1: A car goes from $14 \mathrm{~m} / \mathrm{s}$ to $26 \mathrm{~m} / \mathrm{s}$ in 300 . m .

- What is the acceleration, and
- What time does it take?

Example 2: A rocket going $3130 \mathrm{~m} / \mathrm{s}$ accelerates at $0.00135 \mathrm{~m} / \mathrm{s} / \mathrm{s}$ for a distance of $5.50 \times 10^{9} \mathrm{~m}$.

- What time does it take, and
- What is the final velocity?

Try these example problems.

1. A cart stops in a distance of 3.81 m in a time of 4.51 s . What was its initial velocity? ($1.69 \mathrm{~m} / \mathrm{s}$)
2. Another car with a velocity of $27 \mathrm{~m} / \mathrm{s}$ stops in a distance of 36.74 m . What was its acceleration?
$(-9.9 \mathrm{~m} / \mathrm{s} / \mathrm{s})$
3. A car going $12 \mathrm{~m} / \mathrm{s}$ accelerates at $1.2 \mathrm{~m} / \mathrm{s} / \mathrm{s}$ for 5.0 seconds. What is its displacement during this time? (75 m)
4. A car's brakes slow it at $9.5 \mathrm{~m} / \mathrm{s} / \mathrm{s}$. If it stops in 47.3 m , how fast was it going to start with? $(30 \mathrm{~m} / \mathrm{s})$
5. What time will it take a car going $23 \mathrm{~m} / \mathrm{s}$ to start with, and accelerating at $3.5 \mathrm{~m} / \mathrm{s} / \mathrm{s}$, to go 450 m ? ($10.7585 \approx 11 \mathrm{~s}$ Hint - it is quadratic with "No V_{f} " but you can use "No t " to find V_{f}, and then use "No X " to find t without using the quadratic equation)

Videos 2F-Free Fall Problems

Name

Problem solving tips:
1
2
3

4
5
Example 1 - An object is launched straight up with a velocity of $33.0 \mathrm{~m} / \mathrm{s}$, and strikes the ground at the same elevation from which it is launched. Use the acceleration of gravity to be $-9.80 \mathrm{~m} / \mathrm{s} / \mathrm{s}$, and neglect air friction

1. What time did it take to reach the top
2. How high does it go at the highest?
3. What total time is it in the air?

Example 2 - An air rocket leaves reaches a height of 31.0 m before falling back to the ground.

1. What was the initial velocity
2. What time did it take to reach the top
3. What total time is it in the air?

Example 3 - Red Elk drops from a cliff that is 11.2 m tall

1. With what velocity does he strike the water?
2. What time does it take to hit the water?

Example 4 - Black Elk drops from a cliff and strikes the water at a velocity of $34.0 \mathrm{~m} / \mathrm{s}$.

1. What time did it take him to hit the water?
2. How high is the cliff?

Try these example problems. Don't freak out if you can't immediately get the answer. We will work on these as a group in class. They are solved in the linked videos that follow the main one

1. An air rocket goes straight up, and then falls back to earth, remaining in the air for a total of 6.32 s
2. What time did it take to reach the top
3. What was the initial velocity $(3.16 \mathrm{~s}, 31.0 \mathrm{~m} / \mathrm{s})$
4. It takes a rock 1.52 s to fall from rest from a bridge and strike the water below.
5. How high is the bridge?
6. With what velocity does the rock strike the water? ($11.3 \mathrm{~m},-14.9 \mathrm{~m} / \mathrm{s}$)
