Name

Noteguide for Speed - Videos 2A1

•Use math to solve for Δx and Δt (triangle of mystery) •The units must match!

•The units must match!

A car is going 25 m/s. How far does the car go during the 1.3 seconds it takes you to change songs?

A winch moves a cable 12.5 cm per second. What time will it take to reel in 15 m of cable?

Try these example problems. Don't freak out if you can't immediately get the answer. They are solved in the linked videos that follow the main one, so if you get stuck, just watch the video.

1. How fast are you going if you run 27.0 m in 3.2	2. In what time will a car that is traveling 95.3 f/s	
seconds? (8.4 m/s)	go 13.45 feet? (0.141 s)	
3. How far will a bullet traveling 350 m/s go in	4. A car traveling 80. km/hr will go how far (in	
6.34 seconds? (2200 m)	meters) in 2.7 seconds? (60 m)	
5. What time (in days) will it take a glacier that moves 15.6 feet/day to travel 100 vards? (19.2 days)		

Noteguide for Speed - Videos 2A1

Name

2A2 –	Unit	Conversions	
			-

Distance and time:	Shortcuts: (mph = miles/hour)
1 hr = 60 min = 3600 sec	$1 \text{ m/s} = 3.6 \text{ km/hr} \approx 2.237 \text{ mph} \approx 3.281 \text{ ft/s}$
1 day = 86400 sec	$1 \text{ mph} \approx 1.467 \text{ f/s} (1.466666666) \approx 1.609 \text{ km/hr} \approx 0.4470 \text{ m/s}$
$1 \text{ km} = 1000 \text{ m} \approx 0.6214 \text{ mile}$	$1 \text{ f/s} = 0.3048 \text{ m/s} \approx 0.6818 \text{ mph} (.6818181818) \approx 1.0973 \text{ km/hr}$
1 mile = 5280 ft = 1760 yards ≈ 1609 m	$1 \text{ km/hr} \approx 0.2778 \text{ m/s} \approx 0.6214 \text{ mph} \approx 0.9113 \text{ ft/s}$
$1 \text{ foot} = 12 \text{ inches} \approx 30.48 \text{ cm}$	
1 cm = 2.54 cm (defined)	
$1 \text{ m} \approx 3.281 \text{ ft}$	
1 yard = 3 feet	

Unit cancellation: 30. mph to ft/s:

Distance and time: 1 hr = 60 min = 3600 sec 1 day = 86400 sec $1 \text{ km} = 1000 \text{ m} \approx 0.6214 \text{ mile}$ $1 \text{ mile} = 5280 \text{ ft} = 1760 \text{ yards} \approx 1609 \text{ m}$ $1 \text{ foot} = 12 \text{ inches} \approx 30.48 \text{ cm}$ 1 cm = 2.54 cm (defined) $1 \text{ m} \approx 3.281 \text{ ft}$ 1 yard = 3 feet

Try these example problems. Don't freak out if you can't immediately get the answer. They are solved in the linked videos that follow the main one, so if you get stuck, just watch the video.

1. Convert 32 mile/hour to feet/second (47 f/s)	2. Convert 88.0 feet/second to mph (60.0 mph)
3. Convert 26.82 m/s to mph (60 mph)	4. Convert 110. km/hr to m/s (30.6 m/s)
5. Convert 132 f/s to km/hr (144.8km/hr)	6. Convert 130. km/hr to mph (80.8 mph)
7. Convert 90. mph to m/s (40.2 m/s)	8. Convert 1400 f/s to m/s (426.7 m/s)

Noteguide for Acceleration - Videos 2B

Name

2B – Vector Velocity

Drive vs Reverse In our world, there are two directions + and -

1. A car has a velocity of -2.4 m/s for 36 seconds. What is its displacement in this time, and if it started at a position of +127.0 m, where will it end up?

2. A train starts at a position of -35.1 m and ends at a position of 12.5 m in a time of 13.8 seconds. What was its velocity during this time?

3. A train has a velocity of -25.2 m/s and ends up at a position of -57 m after a time interval of 15 seconds. What was its displacement during this time, and where did it start?

Name

<u>2C - Simple Acceleration</u>

Write down what these quantities are:

Quantity	Formula	Units	What it is called
V			
a			

Example: A car goes from 0 to 27 m/s in 9.0 seconds, what is its acceleration?

Super Confusing Example: A rocket accelerates at 4.5 "g" s. What time will it take to reach the speed of sound (Mach I = 343 m/s) from rest?

Try these example problems. Don't freak out if you can't immediately get the answer. They are solved in the linked videos that follow the main one, so if you get stuck, just watch the video.

1. A car speeds up from 0 to 21 m/s in 5.3 seconds. What is their acceleration? (4.0 m/s/s)	2. A train can accelerate at 0.15 m/s/s. What time will it take to reach its top speed of 24 m/s from	
	rest? (160 s)	
3. What is the final speed if a person accelerates from rest at 32 f/s/s for 2.7 seconds? (86 f/s)	4. What is your acceleration if your velocity goes from 35 m/s to 20. m/s in 4.7 seconds? (-3.2 m/s/s - hint	
	- what is the <u>change</u> in velocity?)	
5. With the interval \mathbf{f} in the length of \mathbf{f} is the interval \mathbf{f} in the interval \mathbf{f} is the interval \mathbf{f} in the interval \mathbf{f} is the interval \mathbf{f} in the interval \mathbf{f} is the interval	/	
5. What is your final velocity if you are going 12 m/s and you accelerate at 0.48 m/s/s for the next 16		
seconds? (19.68 m/s \approx 20. m/s - hint - you are already going 12 m/s - figure out the <u>change</u> in velocity with the formula, and add it to 12 m/s)		

Noteguide for Displacement Graphs - Videos 2G

Whiteboards:

Keep in mind that when you find the slope, you should use the entire line segment. (i.e. 2.0 seconds, use the entire line from t = 0 to t = 3.0 s, and find the rise/run for that entire segment.)

the ontre me nom $t = 0$ to $t = 5.0$ s, and mid the institution that on the segment.)		
1. What is the velocity at 2.0 s? (0.67 m/s)	2. What is the velocity at 4.0 s? (0 m/s)	
3. What is the velocity at 6.2 s? (2.0 m/s)	4. What is the velocity at 8.15 s? (-3.0 m/s)	

Name

Noteguide for Velocity Graphs - Videos 2H

Slope of velocity graphs:

What does the slope on a velocity graph mean?

Whiteboards:

Keep in mind that when you find the slope, you should use the entire line segment.

1. What is the Acceleration at 1.15887 seconds? (1.5	2. What is the Acceleration at 8.1 s? (-0.50 m/s/s)
m/s/s)	

(In calculus the slope is the derivative)

What does the area under a velocity graph mean?

Whiteboards:

"Area under" means the area between the graph and the x-axis. The units of this "area" are meters in this case, so it's not area in a strict sense. Graph areas can have all kinds of different units.

2. What displacement between 4 and 7 seconds?
(13.5 m)

(In calculus the area under is the integral)

For all of these, state what happens to the velocity, and whether this is + or - acceleration

Noteguide for Qualitative Velocity Graphs - Videos 2J Name_

- V

Time

- V

Time

For each of these, what direction is it going? Is it speeding up, or slowing down? State whether the acceleration is + or –

2E - Kinematics

$v_f = v_i + at$	x - displacement	(m)
$x = \frac{1}{2}(v_i + v_f)t$	v _i - initial velocity	(m/s)
$v_{f}^{2} = v_{f}^{2} + 2ax$	v _f - final velocity	(m/s)
$\mathbf{v} = \mathbf{v} \cdot \mathbf{t} + \frac{1}{2} \mathbf{a} \mathbf{t}^2$	a - acceleration	(m/s/s)
$\mathbf{x} - \mathbf{v}_1 \mathbf{t} + 72 \mathbf{a} \mathbf{t}$	t - time	(S)

(write down the names I give them, like "No X", "No a" etc.)

Example 1: A car goes from 14 m/s to 26 m/s in 300. m.

- What is the acceleration, and
- What time does it take?

Example 2: A rocket going 3130 m/s accelerates at 0.00135 m/s/s for a distance of 5.50×10^9 m.

- What time does it take, and
- What is the final velocity?

Try these example problems.

1 A cart stong in a distance of 2 91 m in a time of	2 A car going 12 m/s accelerates at 1.2 m/s/s for
1. A cart stops in a distance of 5.81 in in a time of	2. A car going 12 m/s accelerates at 1.2 m/s/s for
4.51 s. What was its initial velocity? (1.69 m/s)	5.0 seconds. What is its displacement during this
	time? (75 m)
3. Another car with a velocity of 27 m/s stops in a	4. A car's brakes slow it at 9.5 m/s/s. If it stops in
distance of 36.74 m. What was its acceleration?	47.3 m, how fast was it going to start with? (30. m/s)
(-9.9 m/s/s)	
5 What time will it take a car going 22 m/s to start y	with and accelerating at 2.5 $m/a/a$ to go $450 m^2$
5. What time will it take a car going 25 m/s to start v	with, and accelerating at 5.5 m/s/s, to go 450 m?
$(10.7585 \approx 11 \text{ s} \text{ Hint} - \text{it is quadratic with "No V}_{\text{f}}$ " but you can use "No t" t	o find V_f , and then use "No X" to find t without using the quadratic equation)

Videos 2F-Free Fall Problems

Name_

Problem solving tips:

- 1
- 2
- 3
- 3

4

5

Example 1 - An object is launched straight up with a velocity of 33.0 m/s, and strikes the ground at the same elevation from which it is launched. Use the acceleration of gravity to be -9.80 m/s/s, and neglect air friction

- 1. What time did it take to reach the top
- 2. How high does it go at the highest?
- 3. What total time is it in the air?

Example 2 – An air rocket leaves reaches a height of 31.0 m before falling back to the ground.

- 1. What was the initial velocity
- 2. What time did it take to reach the top
- 3. What total time is it in the air?

Example 3 – Red Elk drops from a cliff that is 11.2 m tall

- 1. With what velocity does he strike the water?
- 2. What time does it take to hit the water?

Example 4 – Black Elk drops from a cliff and strikes the water at a velocity of 34.0 m/s.

- 1. What time did it take him to hit the water?
- 2. How high is the cliff?

Try these example problems. Don't freak out if you can't immediately get the answer. We will work on these as a group in class. They are solved in the linked videos that follow the main one

these as a group in class. They are solved in the mixed videos that follow the main one	
1. An air rocket goes straight up, and then falls	2. It takes a rock 1.52 s to fall from rest from a
back to earth, remaining in the air for a total of	bridge and strike the water below.
6.32 s	1. How high is the bridge?
1. What time did it take to reach the top	2. With what velocity does the rock strike the
2. What was the initial velocity $(3.16 \text{ s}, 31.0 \text{ m/s})$	water? (11.3 m, -14.9 m/s)