Problems from 27.2 - Atomic Physics

Closest Approach: $E_K = \frac{1}{2}mv^2$ and $E_P = qV_e = \frac{kq_1q_2}{r}$ $q_1 = 2e$, $q_2 = Ze$

- 1. An alpha particle (m = 6.64×10^{-27} kg) going 5.14×10^{6} m/s will get how close to a silver (Z = 47) nucleus if it hits head on? $(2.47 \times 10^{-13} \text{ m})$
- 2. A speeding alpha particle (m = 6.64×10^{-27} kg) hits a mercury (Z = 80) nucleus head on. If it comes within 17.0 nm of the nucleus' center, how fast was it going to start with? (2.56×10⁴ m/s)
- 3. An alpha particle (m = 6.64×10^{-27} kg) going 4.12×10^{6} m/s will get how close to a bismuth (Z = 83) nucleus if it hits head on? $(6.80 \times 10^{-13} \text{ m})$
- 4. A speeding alpha particle (m = 6.64×10^{-27} kg) hits a lead (Z = 82) nucleus head on. If it comes within 12.0 nm of the nucleus' center, how fast was it going to start with? $(3.08 \times 10^4 \text{ m/s})$
- 5. An alpha particle (m = 6.64×10^{-27} kg) going 2.37×10^{6} m/s will get how close to a gold (Z = 79) nucleus if it hits head on? $(1.95 \times 10^{-12} \text{ m})$

Electron Transitions: $E = -\frac{13.6}{n^2} eV$ and $\lambda = \frac{hc}{E}$

- 6. What is the wavelength of the photon associated with an electron transition from n = 3 to n = 1 in a hydrogen atom? Is the photon being absorbed, or emitted? (103 nm, emitted)
- 7. What is the wavelength of the photon associated with an electron transition from n = 3 to n = 6 in a hydrogen atom? Is the photon being absorbed, or emitted? (1095 nm, absorbed)
- 8. What is the wavelength of the photon associated with an electron transition from n = 2 to n = 1 in a hydrogen atom? Is the photon being absorbed, or emitted? (122 nm, emitted)
- 9. What is the wavelength of the photon associated with an electron transition from n = 2 to n = 4 in a hydrogen atom? Is the photon being absorbed, or emitted? (487 nm, absorbed)
- 10. What is the wavelength of the photon associated with an electron transition from n=6 to n=2 in a hydrogen atom? Is the photon being absorbed, or emitted? (411 nm, emitted)

Nuclear Radius or Heisenberg: $R = R_0 A^{1/3}$ or $\Delta x \Delta p \ge \frac{h}{4\pi}$ or $\Delta E \Delta t \ge \frac{h}{4\pi}$

- 11. What is the radius of C-14 nucleus? (2.89x10⁻¹⁵ m)
- 12. What is the likely mass number of a nucleus with a radius of 3.51×10^{-15} m? (25)
- 13. To effect an alpha decay, an alpha particle must "borrow" 31.1 MeV of energy. What time does it have to escape? (1.06x10⁻²³ s)
- 14. An Alpha particle takes 1.80×10^{-23} s to "tunnel" through a potential barrier. What is the amount of energy it can "borrow" during this time in MeV? (18.3 MeV)
- 15. An electron has an uncertainty in its velocity of $\pm 2.10 \times 10^4$ m/s. What is the minimum uncertainty in its position? (1.38×10⁻⁹ m)
- 16. An electron has an uncertainty in its position of 2.40×10^{-10} m (total range). What is the minimum uncertainty (the total range) of its velocity? $(2.41 \times 10^5 \text{ m/s})$
- 17. A proton has an uncertainty in its position of 3.51×10^{-15} m (total range). What is the minimum uncertainty (the total range) of its velocity? (8.98×10⁶ m/s)
- 18. A proton has an uncertainty in its velocity of $\pm 4.30 \times 10^6$ m/s. What is the minimum uncertainty in its position? (3.66x10⁻¹⁵ m)

Part A: Find the missing decay product:

1	$\tau^- \rightarrow \pi^- + \pi^0 + ??$	$?? \to \pi^+ + \pi^0 + \overline{U_\tau}$	$\tau^{-} \rightarrow \upsilon_{\tau} + ?? + \overline{\upsilon_{e}}$	$\tau^+ \to \overline{\nu_\tau} + e^+ + ??$
	$\upsilon_{ au}$	τ ⁺	e ⁻	$v_{\rm e}$
2				
	$\tau \rightarrow ?? + \mu + \overline{\nu_{\mu}}$	$\tau^+ \rightarrow ?? + \mu^+ + \upsilon_{\mu}$	$?? \rightarrow e^{-} + \overline{\nu_e} + \nu_{\mu}$	$\mu^+ \to e^+ + ?? + \overline{\nu_\mu}$
	υ_{τ}	$\overline{v_{ au}}$	μ'	$v_{\rm e}$
3				
	$\mu^- \rightarrow e^- + \overline{\nu_e} + \nu_\mu + e^+ + ??$	$\mu^+ \to e^+ + ?? + \overline{\nu_\mu} + e^+ + e^-$	$K_L^o \rightarrow \pi^+ + ?? + \overline{\nu_\mu}$	$K^+ \rightarrow ?? + \upsilon_{\mu}$
	e ⁻	$v_{\rm e}$	μ ⁻	μ^{+}

Part B: For these reactions, indicate if it is possible, or indicate every law it violates:

1				
	$p + n \rightarrow K^+ + \eta^o + \Xi^o$	$p + n \rightarrow p + \bar{p} + \bar{n}$	$n + n \longrightarrow \Lambda^{o} + \Sigma^{o}$	$n + n \rightarrow \Omega^+ + \Omega^-$
	No, baryon number, Strangeness	No, charge and baryon number	No, Strangeness	No, baryon number
2				
	$p + p \rightarrow \Omega^+ + e^+ + \Lambda^o + \Sigma^o + n$	$p + p \rightarrow p + n + n + \Omega^+$	$p + p \rightarrow \tau^+ + \upsilon_{\tau} + \mu^+ + \overline{\upsilon_{\mu}}$	$p+n \to n+n+\tau^++\upsilon_\tau$
	No, Le, Strangeness	No, Strangeness	No, Baryon and Lμ	Yes
3				
	$p + \bar{p} \rightarrow \bar{\tau} + \Lambda^{o} + \Omega^{+} + \bar{v_{\tau}}$	$p + \bar{n} \rightarrow \tau^+ + \tau^-$	$\bar{n} + n \rightarrow \tau^+ + \tau^-$	$\mathrm{p} + ar{p} ightarrow \Sigma^{\scriptscriptstyle{-}} + \Omega^{\scriptscriptstyle{+}}$
	No, Strangeness	No, charge	Yes	No, Strangeness
4				
	$p + p \rightarrow p + p + \pi^{o}$	$p + p \rightarrow p + n + \pi^+$	$n+n \rightarrow \Xi^+ + \overline{\Lambda^0} + \Omega^- + n + n + n$	$\pi^{-} + p \rightarrow \pi^{0} + n + \pi^{-} + \pi^{+}$
	yes	yes	yes	yes

Part C: Write the quark combinations that make up a proton and a neutron: $p = \underline{}$ $n = \underline{}$ Identify the following quark combinations as either a meson, or a baryon. Determine the baryon number, strangeness, and the charge of each:

		Baryon or Meson?	B = ?	S = ?	q = ?
1	SS	М	0	0	0
2	dsc	В	+1	-1	0
3	$\bar{u}\bar{u}\bar{u}$	В	-1	0	-2
4	sū	M	0	-1	-1
5	d̄s̄	M	0	+1	0
6	SSS	В	+1	-3	-1
7	ūūc	В	-1	0	-2
8	us	М	0	+1	+1
9	$car{d}$	М	0	0	+1
10	<u>s</u> sc	В	-1	+2	0
11	ucc	В	+1	0	+2
12	$s\bar{b}$	M	0	-1	0

Charge	Quarks		s	Baryon number	
$\frac{2}{3}e$	u	С	t	$\frac{1}{3}$	
$-\frac{1}{3}e$	d	S	b	1/3	
All quarks have a strangeness number of 0					

All quarks have a strangeness number of 0 except the strange quark that has a strangeness number of -1

Data Packet reference for decays:

Charge	Leptons			
-1	e	μ	τ	
0	υe	υμ	υτ	
All leptons have a lepton number				

of 1 and antileptons have a lepton

number of -1