Noteguide for Particle Accelerators - Video 32A

Name
Basic concept $-\mathrm{Vq}={ }^{1} / 2 \mathrm{mv}^{2}$

Velocity of particles?

(2 miles long, 50 GeV)

External beam "Dees"

Forces are mediated by virtual particles
How QED Explains:
What charge actually is

Force dropping off over distance

How accelerating a charge causes it to radiate actual photons

The Yukawa Particle:

$$
\begin{aligned}
& \pi^{+}-139.6 \mathrm{MeV} / \mathrm{c}^{2} \\
& \pi^{\mathrm{o}}-135.0 \mathrm{MeV} / \mathrm{c}^{2} \\
& \pi^{-}-139.6 \mathrm{MeV} / \mathrm{c}^{2}
\end{aligned}
$$

Type	Relative Strength		Field Particle
Strong Nuclear	1	Gluons	
Electromagnetic	10^{-2}		Photon (γ)
Weak Nuclear	10^{-6}		$\mathrm{~W}^{ \pm}$and Z°
Gravitational	10^{-38}	Graviton?	

	Gravitational	Weak	Electromagnetic	Strong
Particles experiencing	All	Quarks, leptons	Charged	Quarks, gluons
Particles mediating	Graviton	$\mathrm{W}^{+}, \mathrm{W}^{-}, \mathrm{Z}^{0}$	γ	Gluons

Name	Particle	Antiparticle
Electron	e^{-}	e^{+}
Proton	p	$\overline{\mathrm{p}}$
Pion	π^{+}	π^{-}

Annihilation:

(Write down what the axes mean, and why the positron is going backwards in time)

Conservation Laws:

Charge
Mass/Energy

Nucleon \#

Conservation of Baryon number: (All Baryons are $\mathrm{B}=+1$, anti-Baryons are $\mathrm{B}=-1$)
TABLE 32-2 Particles (stable under strong decay) ${ }^{\dagger}$

Category	Particle Name	Symbol	Antiparticle	Spin	$\begin{aligned} & \text { Rest Mass } \\ & \left(\mathrm{MeV} / \mathrm{c}^{2}\right) \end{aligned}$	B	$L_{\text {c }}$	L_{μ}	$L_{7} \quad S$	Lifetime (s)	Principal Decay Modes
Baryons	Proton	p	\bar{p}	$\frac{1}{2}$	938.3	+1	0	0	00	Stable	
	Neutron	n	$\overline{\mathrm{n}}$	$\frac{1}{2}$	939.6	+1	0	0	$0 \quad 0$	887	$\mathrm{pe}^{-} \bar{\nu}_{\text {c }}$
	Lambda	Λ^{0}	$\bar{\Lambda}^{0}$	$\frac{1}{2}$	1115.7	+1	0	0	0-1	2.63×10^{-10}	$\mathrm{p} \pi^{-}, \mathrm{n} \pi^{0}$
	Sigma	$\Sigma{ }^{+}$	$\bar{\Sigma}^{-}$	1	1189.4	+1	0	0	0-1	0.80×10^{-10}	$\mathrm{p} \pi^{0}, \mathrm{n} \pi^{+}$
		Σ^{0}	Σ^{0}	$\frac{1}{2}$	1192.6	+1	0	0	0-1	7.4×10^{-20}	$\Lambda^{0} \gamma$
		Σ	$\bar{\Sigma}^{+}$	$\frac{1}{2}$	1197.4	+1	0	0	0-1	1.48×10^{-10}	
	Xi	Ξ^{0}	$\bar{\Xi}^{0}$	$\frac{1}{2}$	1314.9	+1	0	0	0-2	2.90×10^{-10}	$\Lambda^{0} \pi^{0}$
		E-	Ξ^{+}	$\frac{1}{2}$	1321.3	+1	0	0	0-2	1.64×10^{-10}	$\Lambda^{0} \pi^{-}$
	Omega and others	Ω^{-}	Ω^{+}	$\frac{3}{2}$	1672.5	+1	0	0	0-3	0.82×10^{-10}	$\Xi^{0} \pi^{-}, \Lambda^{0} \mathrm{~K}^{-}, \Xi^{-} \pi^{0}$

${ }^{\text {t}}$ See also Table 32-4 for particles with charm and bottomness.
${ }^{\dagger}$ Experimental upper limits on neutrino masses are given in parentheses.
Example: Can the following reaction occur?

$$
\mathrm{p}+\mathrm{n} \rightarrow \mathrm{p}+\mathrm{p}+\bar{p}
$$

Charge:

Mass/Energy

Baryon \#

Watch all these videos, so you know you got it right:

What is the total Baryon number of $\begin{equation*} \mathrm{p}+\mathrm{n}+\overline{\mathrm{n}}+\Omega^{+} \tag{-1} \end{equation*}$	What is the total Baryon number of $\begin{equation*} \Xi^{+}+\bar{\Sigma}^{+}+\Lambda^{\mathrm{o}}+\pi^{+} \tag{0} \end{equation*}$
Can this reaction occur? $\begin{array}{ll} \mathrm{p}+\overline{\mathrm{p}} & --->\Omega^{-}+\Xi^{+}+\mathrm{K}_{\mathrm{s}^{\mathrm{o}}} \\ \mathrm{Q} & \\ \mathrm{E} & \tag{n}\\ \mathrm{~B} & \end{array}$	$\begin{aligned} & \text { Can this reaction_occur? } \\ & \mathrm{p}+\overline{\mathrm{n}} \quad-->\Sigma^{\mathrm{o}}+\Sigma^{+} \\ & \mathrm{Q} \\ & \mathrm{E} \\ & \mathrm{~B} \end{aligned}$
Can this reaction occur? $\begin{array}{lll} & \Lambda^{\mathrm{o}}+\overline{\mathrm{n}} & \cdots>\Sigma^{\mathrm{o}}+\bar{\Sigma}^{+} \\ \mathrm{Q} & & \\ \mathrm{E} & \\ \mathrm{~B} & & \tag{n} \end{array}$	Example This reaction occurs with high probability: $\pi^{-}+\mathrm{p} \rightarrow \mathrm{~K}_{\mathrm{L}}{ }^{\mathrm{o}}+\Lambda^{\circ}$ This reaction is never observed: $\pi^{-}+\mathrm{p} \rightarrow \mathrm{~K}_{\mathrm{L}}{ }^{\circ}+\mathrm{n}$

Example:

Does this reaction conserve strangeness?

$$
\mathrm{p}+\overline{\mathrm{p}} \quad-->\Omega^{-}+\Xi^{+}+\mathrm{K}_{\mathrm{s}} \mathrm{o}
$$

Noteguide for Lepton Number- Videos 32D
Name
Conservation of Lepton number: (Conserved by type $\mathrm{L}_{\mathrm{e}}, \mathrm{L}_{\mathrm{m}}, \mathrm{L}_{\tau}$)
TABLE 32-2 Particles (stable under strong decay) ${ }^{\dagger}$

| Category | Particle
 Name | Symbol | Anti-
 particle | Spin | Rest Mass
 $\left(\mathbf{M e V} / \boldsymbol{c}^{2}\right)$ | \boldsymbol{B} | $\boldsymbol{L}_{\mathrm{e}}$ | $\boldsymbol{L}_{\boldsymbol{\mu}}$ | \boldsymbol{L}_{τ} | \boldsymbol{S} | Lifetime
 (s) |
| :--- | :--- | :--- | :--- | :--- | :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Leptons | Electron | e^{-} | e^{+} | $\frac{1}{2}$ | 0.511 | $0+1$ | 0 | 0 | 0 | Stable | |
| | Neutrino (e) | ν_{c} | $\bar{\nu}_{\mathrm{c}}$ | $\frac{1}{2}$ | $0\left(<7.0 \times 10^{-6}\right)^{\ddagger}$ | $0+1$ | 0 | 0 | 0 | Stable | |
| | Muon | μ^{-} | μ^{+} | $-\frac{1}{2}$ | 105.7 | 0 | 0 | +1 | 0 | 0 | 2.20×10^{-6} |
| | Neutrino (μ) | ν_{μ} | $\bar{\nu}_{\mu}$ | $\frac{1}{2}$ | $0(<0.17)^{\ddagger}$ | 0 | $0+1$ | 0 | 0 | Stable | |
| | Tau | τ^{-} | τ^{+} | $\frac{1}{2}$ | 1777 | 0 | 0 | 0 | +1 | 0 | 2.91×10^{-13} |
| | Neutrino (τ) | ν_{τ} | $\bar{\nu}_{\tau}$ | $\frac{1}{2}$ | $0(<24)^{\ddagger}$ | 0 | 0 | $0+1$ | 0 | Stable | |

Charge	Leptons		
-1	e	μ	τ
0	v_{e}	v_{μ}	v_{τ}

All leptons have a lepton number of 1 and antileptons have a lepton number of -1

Can this decay occur?

$$
\tau^{-} \rightarrow \pi^{-}+\pi^{0}+v_{\tau}
$$

Find the missing decay product:

$$
\tau^{-} \rightarrow v_{\tau}+\mathrm{e}-\quad+\quad ? ?
$$

Whiteboards

Whiteboards:
What is the missing decay product?

	$\tau^{-}-->$	$\mu^{-}+\overline{v_{\mu}}+? ? ?$
q		
L_{e}		
L_{μ}		
L_{τ}		

$$
\mathbf{v}_{\tau}
$$

What is the missing decay product?

	$\mu^{+} \ldots$	$? ?+\overline{v_{\mu}}+\quad v_{e}$
q		
L_{e}		
L_{μ}		
L_{τ}		

What is the missing decay product?

	$\tau^{+} \ldots$	$\mu^{+}+? ?+\bar{v}_{\tau}$
q		
L_{e}		
L_{μ}		
L_{τ}		

What is the missing particle?

	$? ?-->$	$\mathrm{e}-+\quad \overline{v_{e}}+v_{\mu}$	
q			
L_{e}			
L_{μ}			
L_{τ}			

Baryons are (qqq)

Particle name	Symbol *	Quark content	Rest mass (MeV/c²)		J^{P} ¢	$Q($ e)	- S	C *	B^{\prime} -	$p=$	S	q
nucleon/proton ${ }^{[7]}$	$\mathrm{p} / \mathrm{p}^{+} / \mathrm{N}^{+}$	uud	$938.272046(21)^{[8]}$	1/2	$1 / 2^{+}$	+1	0	0	0			
nucleon/neutron ${ }^{[8]}$	$n / n^{0} / N^{0}$	udd	$939.565379(21)^{[8]}$	1/2	$1 / 2^{+}$	0	0	0	0			
Lambdal ${ }^{[9]}$	\wedge^{0}	uds	1115.683 ± 0.006	0	$1 / 2^{+}$	0	-1	0	0	$\mathrm{n}=$		
charmed Lambda[${ }^{10]}$	Λ_{c}^{+}	udc	2286.46 ± 0.14	0	$1 / 2^{+}$	+1	0	+1	0	$\Lambda^{\mathrm{o}}=$		
bottom Lambdaa ${ }^{[11]}$	Λ_{b}^{0}	udb	5619.4 ± 0.6	0	1/2+	0	0	0	-1			

Mesons are ($\mathrm{q} \bar{q}$)

Whiteboards:

		Baryon or Meson?	$\mathrm{B}=?$	$\mathrm{~S}=?$	$\mathrm{q}=?$
1	usc				
2	u \bar{s}				
3	ddc				
4	d \bar{s}				

Charge	Quarks			Baryon number
$\frac{2}{3} e$	u	c	t	$\frac{1}{3}$
$-\frac{1}{3} e$	d	s	b	$\frac{1}{3}$
All quarks have a strangeness number of 0 except the strange quark that has a strangeness number of -1				

\qquad

Rules
-Time is up, position is to the right. (Sometimes reversed btw)
-Exchange particles ($\left.\mathrm{Z}^{\circ}, \mathrm{W}^{+}, \mathrm{W}^{-}, \gamma, \pi^{\circ}, \pi^{+}, \pi^{-}\right)$are a dotted line, or wavy line.
-Matter particles are shown with an arrow forward in time, anti matter, backward.
-Vertices obey conservation laws.

Examples:

$$
\mathrm{B}^{-} \text {decay: } \mathrm{n} \rightarrow \mathrm{p}+\mathrm{e}^{-}+\overline{v_{\mathrm{e}}}
$$

B+ decay: $p \rightarrow n+\mathrm{e}^{+}+v_{\mathrm{e}}$
μ^{-}decay: $\mu^{-} \rightarrow v_{\mu}+e^{-}+\bar{v}_{e}$
μ^{+}decay: $\mu^{+} \rightarrow \bar{v}_{\mu}+\mathrm{e}^{+}+v_{\mathrm{e}}$
τ^{-}decay: $\tau^{-} \rightarrow v_{\tau}+\mu^{-}+\overline{v_{\mu}}$
τ^{+}decay: $\tau^{+} \rightarrow{\overline{v_{\tau}}}+\mu^{+}+v_{\mu}$

Neutron proton Collision: (Label the exchange particle)

Proton electron collision: $\mathrm{p}+\mathrm{e}-\mathrm{n}+\mathrm{v}_{\mathrm{e}}$.

$$
\mathrm{n}+v_{\mathrm{e}} \rightarrow v_{\mathrm{e}}+\mathrm{n} \quad \mathrm{n}+v_{\mathrm{e}} \rightarrow \mathrm{p}+\mathrm{e}^{-}
$$

($\mathrm{C}-12$ is another notation, so the number 12 is the mass number, everyone knows Carbon is element 6)

Whiteboards:

What is the Atomic notation for tritium? (tritium is an isotope of Hydrogen with 2 neutrons) $(3 / 1 \mathrm{H})$	10 protons, 12 neutrons. What is its atomic notation? $(22 / 10 \mathrm{Ne})$
How many neutrons in $\mathrm{U} 235 ?(235=\mathrm{A})$ (143)	How many neutrons in $\mathrm{Pb} 208 ?(208=\mathrm{A})$ (126)
How many neutrons in $\mathrm{Kr} 78 ?$ (42)	Draw a picture of a bunny here:

Binding energy - the energy to take an atom apart

```
Unified Mass Units: (u)
C 12 (neutral atom) \(=12.0000000 \mathrm{u}\) (defined)
\(1 \mathrm{u}=1.6605 \times 10^{-27} \mathrm{~kg}=931.5 \mathrm{MeV}\) (show \(\mathrm{c}=2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}\) )
Electron \(=.00054858 \mathrm{u}\) (not useful)
Proton \(=1.007276\) u (not useful)
H (neutral atom) \(=1.007825 \mathrm{u}\) (very useful)
Neutron \(=1.008665 \mathrm{u}\) (very useful)
```

(The bigger the binding energy per nucleon, the more stable the nucleus)

H (neutral atom) $=1.007825 \mathrm{u}$ (very useful)
Neutron $=1.008665 \mathrm{u}$ (very useful)
$1 \mathrm{u}=931.5 \mathrm{MeV}$
Binding energy in general
Binding energy Example - Binding Energy of C-14 1. Look neutral atom mass
$\mathrm{H}($ neutral atom $)=1.007825 \mathrm{u}$, Neutron $=1.008665 \mathrm{u}$
2. Break atom into H and n $1 \mathrm{u}=931.5 \mathrm{MeV}$
3. Subtract neutral atom mass from taken apart mass

C 14 has a mass of 14.003242 u (Appendix B)
4. Multiply mass difference by $931.5 \mathrm{Mev} / \mathrm{u}$

What is the binding energy for Nitrogen 13?	What is the binding energy for Carbon 12? $(\mathrm{Z}=7) \mathrm{N} 13$ mass $=13.005739 \mathrm{u}$ $\mathrm{H}=1.007825 \mathrm{u}$ Neutron $=1.008665 \mathrm{u}$ $1 \mathrm{u}=931.5 \mathrm{MeV}$ $(94.11 \mathrm{MeV})$
	$\mathrm{H}=1.007825 \mathrm{u}$
	Neutron $=1.008665 \mathrm{u}$
	$1 \mathrm{u}=931.5 \mathrm{MeV}$
	$(92.16 \mathrm{MeV})$

\qquad

$$
{ }_{2} \mathrm{He}+{ }^{14}{ }_{7} \mathrm{~N}-->{ }^{17}{ }_{8} \mathrm{O}+{ }_{1}{ }_{1} \mathrm{H}
$$

-Charge and nucleon number are conserved
-Can be written as follows:

${ }^{14}{ }_{7} \mathrm{~N}(\alpha, \mathrm{p}){ }^{17}{ }_{8} \mathrm{O}$

Initial Nucleus(bombarding particle, emitted particle)Final Nucleus
Common Particles you should know:
$\alpha={ }_{2}{ }_{2} \mathrm{He}, \mathrm{p}={ }_{1}^{1} \mathrm{H}, \mathrm{d}($ deuterium $)={ }_{1}{ }_{1} \mathrm{H}, \mathrm{t}($ tritium $)={ }^{3}{ }_{1} \mathrm{H},{ }_{0}{ }_{0} \mathrm{n}=$ neutron, ${ }^{0} \gamma=$ gamma

Exoergic means:
Endoergic means:
Example:
What is the initial nucleus:
???
$+$
n ---> \quad +
${ }_{6}^{14} \mathrm{C}$

Whiteboards: - Find the missing nucleus

Example:
Is this reaction exoergic or endoergic? What energy does it require or give off? (Known as the Q value)

$$
\begin{array}{ll}
\mathbf{1 9 7}^{\mathbf{7 9}} \mathbf{A u}=196.966552 & \mathbf{1 9 9}^{\mathbf{8 0}} \mathbf{H g}=198.968262 \\
\alpha=\mathrm{He}=4.002603 & \mathrm{~d}={ }^{\mathbf{2}} \mathbf{H}=2.014102
\end{array}
$$

Whiteboards:

> Try this reaction - is it endo or exo, and how much? $$
\begin{array}{ll}\mathbf{4 0}_{\mathbf{1 9}} \mathbf{K}(\mathbf{p}, \mathbf{n}) & \mathbf{4 0}_{\mathbf{2 0}} \mathbf{C a} \\ { }^{40}{ }_{\mathbf{1 9}} \mathbf{K}=39.9639987 & { }^{40}{ }_{20} \mathbf{C a}=39.9625912 \\ \mathrm{p}=\mathrm{H}=1.007825 & \mathbf{n}=1.008665\end{array} \quad \begin{array}{l}\text { (Q }=+0.529 \mathrm{Mev}(\text { Exoo) })\end{array}
$$

Try this reaction - is it endo or exo, and how much?
${ }^{137}{ }_{56} \mathrm{Ba}(\mathrm{n}, \gamma){ }^{138}{ }_{56} \mathrm{Ba}$
${ }^{\mathbf{1 3 7}}{ }_{\mathbf{5 6}} \mathbf{B a}=136.905821 \quad \mathbf{1 3 8}_{\mathbf{5 6}} \mathbf{B a}=137.9052413$
$\mathbf{n}=1.008665$
$\gamma=? ?$
$(\mathbf{Q}=+\mathbf{8 . 6 1 1} \mathrm{MeV}($ Exo $))$

The curve of binding energy:

Define:
Binding energy per nucleon -

What's more and less stable -

Mark where fusion (joining) and fission (splitting) can release energy. Where are the most stable nuclei?

Fusion powers the sun:
Energy comes primarily from the Proton-Proton cycle:
${ }^{1} \mathrm{H}+{ }^{1} \mathrm{H}={ }^{2} \mathrm{H}+\mathrm{e}^{+}+v$
${ }^{1} \mathrm{H}+{ }^{2} \mathrm{H}={ }^{3} \mathrm{He}+\gamma$
${ }^{3} \mathrm{He}+{ }^{3} \mathrm{He}={ }^{4} \mathrm{He}+{ }^{1} \mathrm{H}+{ }^{1} \mathrm{H}$

> Helium can also fuse:
> ${ }^{4} \mathrm{He}+{ }^{4} \mathrm{He}={ }^{8} \mathrm{Be}+\gamma$
> ${ }^{4} \mathrm{He}+{ }^{8} \mathrm{Be}={ }^{12} \mathrm{C}+\gamma$
> Carbon can fuse as well:
> ${ }^{12} \mathrm{C}+{ }^{12} \mathrm{C}={ }^{24} \mathrm{Mg}+\gamma$
> ${ }^{16} \mathrm{O}+{ }^{16} \mathrm{O}={ }^{28} \mathrm{Si}+{ }^{4} \mathrm{He}$

Part 2 Nuclear fusion
The diagram shows the variation of nuclear binding energy per nucleon with nucleon number for some of the lighter nuclides.

(iii) Show that the energy released when two ${ }_{1}^{2} \mathrm{H}$ nuclei fuse to make a ${ }_{2}^{4} \mathrm{He}$ nucleus is approximately 4 pJ .

Finding Q-Value from Binding Energy per nucleon: (We did these before using mass)

$$
{ }_{19} K(p, n){ }_{20}^{40} \mathbf{C a}
$$

$\mathrm{K}-40$ has a BE of 8.538080 MeV per nucleon
$\mathrm{Ca}-40$ has a BE of 8.551299 MeV per nucleon $(\mathrm{Q}=+0.529 \mathrm{MeV}$ (Exo))

	7.915744	Au-197	
Is this reaction exoergic or endoergic? What energy does it	7.073918	He-4	
require or give off? (Known as the Q value)	1.112287	H-2	
${ }_{79} \mathrm{~A} \mathbf{u}(\alpha, d){ }_{80}^{199} \mathbf{H g}$	7.905368	Hg-199	$(-12.30 \mathrm{MeV})$

Noteguide for Radioactivity and Decay Series- Videos 30CD
Name \qquad
Videos C:

Discovery of Radioactivity
U salts cloud film on protected plates Ionized air
Could be deflected by B field (unlike X rays)
Discovered radioactive decay
 (Before)

adiation

α (Alpha)	2 p 2 n (He nuc) $(4 \mathrm{~cm}$ air)	$\mathrm{A}-4, \mathrm{Z}-2$
β - (Beta-)	e - (electron) (Thin Al foil, 1-3 m air)	$\mathrm{A}-0, \mathrm{Z}+1$ (Conservation of charge) (neutron to proton)
$\beta+$ (Beta +)	$\mathrm{e}+$ (positron)	$\mathrm{A}-0, \mathrm{Z}-1$ (proton to neutron)
γ (Gamma)	High energy Photon (5-.05 nm) (some thickness of lead)	$\mathrm{A}-0, \mathrm{Z}-0$ Parent loses mass

Radioactive
sample (radium)

Whiteboards:

$\text { 1. }{ }_{61}^{145} \mathrm{Pm} \longrightarrow \quad+\alpha$ (141/59 Praseodymium)	$\text { 2. }{ }^{60}{ }_{27} \mathrm{Co} \longrightarrow \quad+\beta-$ $(60 / 28 \mathrm{Ni})$
3. ${ }^{40}{ }_{19} \mathrm{~K} \longrightarrow \longrightarrow+{ }^{+}$ $\text { (} 40 / 18 \mathrm{Ar})$	4. ($222 / 86 \mathrm{Rn}$)
5. ?? $\longrightarrow{ }^{40}{ }_{20} \mathrm{C}+\beta-$ $\left({ }^{40}{ }_{19} \mathbf{K}\right)$	6. ${ }^{210}{ }_{82} \mathrm{~Pb} \longrightarrow{ }^{206}{ }_{80} \mathrm{Hg}+$? (α)
7. ?? $\longrightarrow{ }^{15} \mathbf{N}+\beta+$ $\left({ }^{15}{ }_{8} \mathbf{O}\right)$	8. ${ }^{14} \mathrm{C} \longrightarrow{ }_{6}^{14} \mathrm{C}+$?? (γ)

Videos D:

Decay series:
$\mathrm{U} 238>\mathrm{Th} 234+\alpha$
Th234>Pa234+ β
$\mathrm{Pa} 234>\mathrm{U} 234+\beta$
$\mathrm{U} 234>\mathrm{Th} 230+\alpha$
Th $230>$ Ra226 $+\alpha$
Ra226>Rn222 $+\alpha$
Rn222>Po218 $+\alpha$
-Uh - then it gets a little complicated
-Eventually the product is stable -Online Nuclides

OK - So try this yourself - go to

http://atom.kaeri.re.kr:8080/ton/nuc8.html

and type U-238 into the box in the upper left corner that says
Nuclide : \square

Nuclide : $u-238$

Off you go. Keep following links after "mode of decay". Sometimes there are more than one...

Eventually, as long as you are clicking on the products of the decay, you will always end up at $\mathrm{Pb}-206$ Try Bk-247
Look around up there near the top of the Chart of the Nuclides, and find other exciting decay series..
$\mathrm{He}($ neutral atom $)=4.002603 \mathrm{u}$
Calculating mass defect of alpha decay (5.414 MeV)
92-U-232 --> 90-Th-228 + Alpha
232.037131 --> $228.028716+4.002603$

Why Alpha Decay:

Whiteboards:
Find the energy of this Alpha Decay in MeV:

```
247 97Bk --> 243 95Am + 
247.070300 --> 243.061373 + 4.002603
```

Find the energy of this Alpha decay in MeV , Joules, and calculate the velocity of the particle given the mass of an alpha particle is $6.64 \times 10^{-27} \mathrm{~kg}$

${ }^{243}{ }_{95} \mathrm{Am}$	$\rightarrow>{ }^{239}{ }_{93} \mathrm{~Np}$	+	$\boldsymbol{\alpha}$
243.061373	$->$	239.052932	+

Videos 30F:

Tunneling - Energy is not conserved!

E_{k} of alpha - observed
Shape of curve
Capture of Alpha:
Repulsion - Coulombic
Attraction - Strong Nuc.
$\mathrm{E}_{\mathrm{k}(\text { Alpha })}<\mathrm{E}_{\mathrm{k} \text { (Capture) })}$

Alpha shouldn't escape (energy)
$\Delta \mathrm{E} \Delta \mathrm{t} \geq \mathrm{h} / 2 \pi$
Violates COE (briefly)
"Tunneling"
Pure quantum randomness
\qquad
Video 30G:

Conservation of charge
Beta minus - electron
"As if" neutron -> proton + electron
Beta plus - positron
"As if" proton -> neutron + positron
Particles are "of the nucleus" (not orbital)
v - Neutrino, (anti neutrino) - fudge
Energy is continuous (ie. neutrino gets random share)

Pauli, Fermi, and the little neutral one

Beta decay products were missing energy
Pauli proposes a particle is carrying away energy
Fermi names it Neutrino - "Little neutral one" - It.
Neutrinos confirmed in 1956, no surprise

Videos 30H:

Gamma Decay:

Nucleus has energy levels
Energy of transition emitted as a high energy photon ($\lambda \approx 5-.05 \mathrm{~nm}$)
Usually after a beta or alpha decay
Many energies possible
Stopped by meters of lead Used for food irradiation

Gamma ray energies associated with alpha and beta decays - so Alpha and Gamma energies are discrete. (Like spectral lines we saw)

239.052464 --> 239.052157

What is the energy of the gamma emitted?

Whiteboards:
Tl-208 emits a 0.6210 MeV gamma and the neutral atom in the unexcited state has a mass of 207.9820047 u . What was the mass of the excited state before the gamma was emitted? (207.9826714 u)

[^0]\qquad
Videos 30I:

Probability and activity

N - Number of un-decayed nuclei (number)
λ - Per second probability of a nuclei decaying (s^{-1})
A - Activity - decays $/ \sec$ (Becquerels (Bq) $=\mathrm{s}^{-1}$)

Example - Radon 222 has an atomic mass of 222.02. How many grams of it do you have if your activity is 8.249×10^{16} decays $/ \mathrm{sec}$, and your decay probability is $2.098 \times 10^{-6} \mathrm{~s}^{-1} ? \quad \mathrm{~N}_{\mathrm{A}}=6.02 \times 10^{23}$ atoms $/ \mathrm{mol}$

$$
A=-\frac{\Delta N}{\Delta t} \quad A=\lambda N=\lambda N_{0} e^{-\lambda t}
$$

Whiteboards:

What is the activity if you have a λ of $3.19 \times 10{ }^{-10}$ $\mathrm{~s}^{-1}$, and you have 5.12×10^{23} un-decayed nuclei? $\left(1.63 \times 10^{14}\right.$ decays/sec $)$	What is the λ if 1.27×10^{20} un-decayed nuclei generate 1420 decays per second? $\left(1.12 \times 10^{-17} \mathrm{~s}^{-1}\right)$

Videos 30J:

λ - Per second probability of a nuclei decaying (s^{-1})
N - Number of un-decayed nuclei (number)
A = Activity - decays/sec (s^{-1})
$A=-\Delta N / \Delta t$
$\mathrm{N}=\mathrm{N}_{0} \mathrm{e}^{-\lambda \mathrm{t}}$ - Exponential decay
N_{0} - Original value
N - Value at time t
t-Elapsed time
DiffEQ...
$\mathrm{A}=\lambda \mathrm{N}=\lambda \mathrm{N}_{0} \mathrm{e}^{-\lambda \mathrm{t}}$

Half life
$\mathrm{T}_{1 / 2}$ - Half life - time for half nuclei to decay
$T_{\frac{1}{2}}=\frac{\ln 2}{\lambda}$

Example: \quad Bi 211 has a half life of 128.4 s. What is the per-
$\mathrm{A}=\lambda \mathrm{N}=\lambda \mathrm{N}_{0} \mathrm{e}^{-\lambda \mathrm{t}} \quad$ second probability of a nuclei decaying? If you
$A=-\Delta \mathrm{N} / \Delta \mathrm{t} \quad$ start out with 32 grams of Bi 211 , how much is
$\mathrm{N}=\mathrm{N}_{0} \mathrm{e}^{-2 \mathrm{t}} \quad$ left after 385.2 s ? After what time is there 23
$\mathrm{T}_{12}=\ln (2) / \lambda \quad$ grams left? What is the activity when there is 23
grams left? $(\mathrm{m}=210.987 \mathrm{u})(4.0 \mathrm{~g}, 61 \mathrm{~s}, 3.54 \mathrm{E}+20 \mathrm{~Bq})$

Whiteboards:

1. Oregonium has a decay probability of 8.91×10^{-8} s^{-1}. What is its half life in days? (90 days)
2. What is the nuclear decay probability of a substance that has a half life of 96.23 minutes? (0.0001201 s ${ }^{-1}$)
3. Tualatonium has a half life of 12 seconds. If you start with 64 grams of it, how much remains after a minute? (Cheat) (2.0 g)
4. A certain substance has an activity of 1245 counts/sec initially, and an activity of 938 counts/second after exactly 3.00 minutes. What is the half life of the substance? (441 s)

Video 30K: Radiometric Dating

So - go read the account of Clair Patterson: https://en.wikipedia.org/wiki/Clair_Cameron_Patterson (You won't believe it)

A nucleus is bound by the strong nuclear force. Since this force is extremely short range $\left(1 \times 10^{-15} \mathrm{~m}\right)$ as the nucleus gets bigger, nuclei become in general less stable because the Coulombic repulsion of the protons gets stronger, and the strong nuclear gets weaker. Ultimately there is an upper limit to the size of a stable nucleus.

Forces in a nucleus:
Coulombic force:
Strong Nuclear Force:

A graph of neutrons vs. protons for stable nuclei:

Pros:
Cons:

Example Question: An 820 MW power plant is $30 . \%$ efficient. How much Uranium 235 will it use in a year? Assume that a single atom will yield 200 . MeV of energy. Uranium 235 has a mass of $235.0439231 \mathrm{u}, \mathrm{N}_{\mathrm{A}}$ is 6.02×10^{23}.

Chernobyl:

[^0]: ${ }^{245}{ }_{96} \mathrm{Cm} \quad->\quad{ }^{245}{ }_{96} \mathrm{Cm}+\quad \gamma$
 245.0658034 u --> ???????

 What is the mass of the daughter nucleus, if a 0.2957 MeV gamma photon is emitted?

