Name

Closest Approach:
$$E_k = \frac{1}{2}mv^2$$
 $E_p = qV_e = \frac{kQq}{r}$ $Q = 2e$, $q = Ze$ 1 fm = 10⁻¹⁵ m

- Show your work, and circle your answers and use sig figs to receive full credit.

 Closest Approach: $E_k = {}^1/_2mv^2$ $E_p = qV_0 = {}^{\frac{kQq}{r}} \quad Q = 2e, \ q = Ze \quad 1 \text{ fm} = 10^{-15} \text{ m}$ 1. An alpha particle (m = 6.64×10^{-27} kg) going 5.36×10^7 m/s will get how close to a lead (Z = 82) nucleus if it hits head on? (3.97 fm)
- 2. A speeding alpha particle ($m = 6.64 \times 10^{-27} \text{ kg}$) hits a cobalt (Z = 27) nucleus head on. If it comes within 56.0 fm of the nucleus' center, how fast was it going to start with? (8.19x10⁶ m/s)
- 3. A 36.0 MeV alpha particle ($m = 6.64 \times 10^{-27}$ kg) can get how close to a gold nucleus (Z = 79)? (36.0 MeV is the KE) (6.32 fm)

Bohr Atom:
$$\lambda = \frac{hc}{E}$$
 and $E = -\frac{13.6}{n^2} \text{ eV}$

- 4. What is the wavelength of the photon associated with an electron transition from n = 2 to n = 1 in a hydrogen atom? Is the photon being absorbed, or emitted? (122 nm – emitted)
- 5. What is the wavelength of the photon associated with an electron transition from n = 2 to n = 5 in a hydrogen atom? Is the photon being absorbed, or emitted? (434 nm – absorbed)

Nuclear Radius:
$$R = R_0 A_3^{\frac{1}{3}}$$
 $R_0 = 1.2 \times 10^{-15} \text{ m } (1.2 \text{ fm})$

- 6. What is the radius of Cl-36 nucleus? (3.96 fm)
- 7. What is the likely mass number of a nucleus with a radius of 7.064×10^{-15} m? (204)

Heisenberg Indeterminacy:

 $\Delta x \Delta p \ge \frac{h}{4\pi}$ or $\Delta E \Delta t \ge \frac{h}{4\pi}$

8. To effect an alpha decay, an alpha particle must "borrow" 23.0 MeV of energy. What time does it have to escape? (1.43x10⁻²³ s)

9. A proton has an uncertainty in its velocity of $\pm 1.20 \times 10^6$ m/s. What is the minimum uncertainty in its position? (13.1 fm)

Conceptual Questions:

I: How was Rutherford's atomic model different from Thomson's "plum pudding" model?

I: How did Rutherford discover the nucleus? What size did he determine for the atom and the nucleus?

I1: How does the density of a nucleus change with mass number? What is the density of the Uranium-235 nucleus? What is the density of the carbon-12 nucleus? Calculate both densities: $(2.3x10^{17} \text{ kg m}^{-3})$ m = $A(1.661x10^{-27} \text{ kg})$, V = $^4/_3\pi r^3$, ρ = $^m/_V$

K: Specifically what phenomenon, what observed behavior of atoms was Bohr trying to explain with his quantum atomic model?

N: Energy indeterminacy accounts for nuclear decay - particles in the nucleus "borrow" energy to escape - Where does the energy come from that they "borrow", and where does it go after it has escaped?

O: What was the Einstein-Bohr debate about? What did Einstein object to in quantum mechanics?

Part A: Find the missing decay product:

1	$\tau^- \rightarrow \pi^- + \pi^0 + ??$	$?? \to \pi^+ + \pi^0 + \overline{U_\tau}$	$\tau^{-} \rightarrow \upsilon_{\tau} + ?? + \overline{\upsilon_{e}}$	$\tau^+ \to \overline{\nu_\tau} + e^+ + ??$
	$\upsilon_{ au}$	τ ⁺	e ⁻	$v_{\rm e}$
2				
	$\tau \rightarrow ?? + \mu + \overline{\nu_{\mu}}$	$\tau^+ \rightarrow ?? + \mu^+ + \upsilon_{\mu}$	$?? \rightarrow e^{-} + \overline{\nu_e} + \nu_{\mu}$	$\mu^+ \to e^+ + ?? + \overline{\nu_\mu}$
	υ_{τ}	$\overline{v_{ au}}$	μ'	$v_{\rm e}$
3				
	$\mu^- \rightarrow e^- + \overline{\nu_e} + \nu_\mu + e^+ + ??$	$\mu^+ \to e^+ + ?? + \overline{\nu_\mu} + e^+ + e^-$	$K_L^o \rightarrow \pi^+ + ?? + \overline{\nu_\mu}$	$K^+ \rightarrow ?? + \upsilon_{\mu}$
	e ⁻	$v_{\rm e}$	μ ⁻	μ^{+}

Part B: For these reactions, indicate if it is possible, or indicate every law it violates:

1		•		
	$p + n \rightarrow K^+ + \eta^o + \Xi^o$	$p + n \rightarrow p + \bar{p} + \bar{n}$	$n + n \rightarrow \Lambda^{o} + \Sigma^{o}$	$n + n \rightarrow \Omega^+ + \Omega^-$
	No, baryon number, Strangeness	No, charge and baryon number	No, Strangeness	No, baryon number
2				
	$p + p \rightarrow \Omega^+ + e^+ + \Lambda^o + \Sigma^o + n$	$p + p \rightarrow p + n + n + \Omega^+$	$p + p \rightarrow \tau^+ + \upsilon_{\tau} + \mu^+ +$	$p + n \rightarrow n + n + \tau^{+} + \upsilon_{\tau}$
	No, Le, Strangeness	No, Strangeness	$\overline{v_{\mu}}$	Yes
			No, Baryon and Lμ	
3				
	$p + \bar{p} \rightarrow \bar{\tau} + \Lambda^{o} + \Omega^{+} + \bar{v_{\tau}}$	$p + \bar{n} \rightarrow \tau^+ + \tau^-$	$\bar{n} + n \rightarrow \tau^+ + \tau^-$	$p + \bar{p} \rightarrow \Sigma^- + \Omega^+$
	No, Strangeness	No, charge	Yes	No, Strangeness
4				
	$p + p \rightarrow p + p + \pi^{o}$	$p + p \rightarrow p + n + \pi^+$	$n+n \rightarrow \Xi^+ + \overline{\Lambda^0} + \Omega^- + n + n + n$	$\pi^{-} + p \rightarrow \pi^{0} + n + \pi^{-} + \pi^{+}$
	yes	yes	yes	yes

Part C: Write the quark combinations that make up a proton and a neutron: $p = \underline{\hspace{1cm}}$ $n = \underline{\hspace{1cm}}$ Identify the following quark combinations as either a meson, or a baryon. Determine the baryon number, strangeness, and the charge of each:

		Baryon or Meson?	B = ?	S = ?	q = ?
1	SS	M	0	0	0
2	dsc	В	+1	-1	0
3	$\bar{u}\bar{u}\bar{u}$	В	-1	0	-2
4	sū	M	0	-1	-1
5	d̄s̄	M	0	+1	0
6	SSS	В	+1	-3	-1
7	$\bar{u}\bar{u}\bar{c}$	В	-1	0	-2
8	us	M	0	+1	+1
9	$c ar{d}$	M	0	0	+1
10	<i>\$\bar{s}\bar{c}</i>	В	-1	+2	0
11	ucc	В	+1	0	+2
12	$s\bar{b}$	М	0	-1	0

Charge	Quarks		S	Baryon number		
$\frac{2}{3}e$	u	С	t	$\frac{1}{3}$		
$-\frac{1}{3}e$	d	S	b	$\frac{1}{3}$		
All quarks have a strangeness number of 0						
except the strange quark that has a						
strangeness number of -1						

Data Packet reference for decays:

Charge	Leptons				
-1	e	μ	τ		
0	υe	υμ	υτ		
All leptons have a lepton number					
of 1 and antileptons have a lepton					

number of -1