What you will miss the most about TuHS

Physics

Murray	Dedicated	
Show your work, circle your answers, and use sig figs to receive full credit.		
$1 \text{ u} = 1.6605\text{E}-27 \text{ kg} = 931.5 \text{ MeV}, {}^{1}_{1}\text{H} = 1.00000000000000000000000000000000000$	$07825 \text{ u}, \ {}^{1}_{0}\text{n} = 1.008665 \text{ u}$	
1. What is the binding energy and the binding	energy per nucleon of Ca-44?	

2. Fill in the table (not all these reactions occur)

$^{16}_{8}$ O (α , t) ??	?? (p , n) ²³⁹ ₉₄ Pu	$^{16}_{8}$ O (α , ??) $^{19}_{10}$ Ne	$^{28}_{14}$ Si (?? ,n) $^{28}_{15}$ P
¹⁷ ₉ F	²³⁹ ₉₃ Np	¹ ₀ n	¹ 1p

3. Find the Q value for this nuclear reaction: ${}^{7}_{3}$ Li(t,n) ${}^{9}_{4}$ Be. Label the reaction as either energy requiring (endoergic) or energy releasing (exoergic) (you will have to look up the masses in the table...)

4-5: Consider this fission reaction: ${}^{235}_{92}U + {}^{1}_{0}n \rightarrow {}^{148}_{57}La + {}^{85}_{35}Br + some neutrons$ U-235 = 235.043923 u, La-148 = 147.932191 u, Br-85 = 84.915608 u (These masses will be given to you here) 4. How many neutrons are released? (3)

5. What is the Q value for this reaction?