⁵⁴₂₆Fe

Name_

⁷⁹37Rb

What you will miss least about TuHS

⁴⁹21Sc

Show your work, circle your answers, and use sig figs to receive full credit.			
$1 \text{ u} = 1.6605 \text{ x} 10^{-27} \text{ kg} = 931.5 \text{ MeV}, \ ^{1}_{0}\text{n} = 1.008665 \text{ u}$			
1. Find the missing particle or nucleus in these decays: (These are fictitious - ignore neutrinos for now)			
$^{83}_{39}Y \rightarrow ?? + \alpha$	$?? \rightarrow {}^{49}_{22}\text{Ti} + \beta^-$	${}^{50}_{24}\text{Cr} \rightarrow {}^{50}_{23}\text{V} + ??$	$^{54}_{26}$ Fe $\rightarrow ?? + \gamma$

 β^+

2. What is the kinetic energy of the alpha particle that 208 Po (m = 207.981222 u) gives off becoming 204 Pb (m = 203.973020) in MeV?

3. Imagine it is possible for ${}^{14}_{7}N$ undergo both β^{-} and β^{+} decay. Write the complete decay equation below for each (complete with neutrino or anti-neutrino)

4. You have 24.0 grams of a radioactive substance with a half life of 14.0 minutes. In what time will you have 3.00 grams of it left?

5. The activity of a sample with a half-life of 23.5 minutes is initially 3.412×10^6 counts/second. What will it be in 6.00 hours?

If K-40(m = 39.964 u) had a half life of 14.0 hours, (It's actually stable) what would be the activity of 0.0240 grams of it?