Problems from A16.1: Vector Forces

$$F = ma$$
 $E = \frac{F}{q}$ $g = \frac{F}{m}$

- 1. An electron is in a 2310 N/C electric field to the West. What is its acceleration? Look up the charge and mass in your data packet. (4.06x10¹⁴ ms⁻² East)
- 2. A proton accelerates North at 3.80x10¹² ms⁻². What is the electric field? (3.97x10⁴ N/C North)
- 3. There is a upward force of 0.0120 N on a charge inside a downward electric field of 450. N/C. What is the charge? Is it positive or negative? (-2.67x10⁻⁵ C, negative)
- 4. The planet Xzarr exerts a force of 67.0 N on a 4.50 kg mass. What is the gravitational field strength? (14.9 N/kg)
- 5. A region in space has a gravitational field strength of 1.40 N/kg. What mass would experience a force of 780. N. (557 kg)

$$E = \frac{F}{q}$$
 $g = \frac{F}{m}$ $E = -\frac{\Delta V_e}{\Delta r}$ (Electrical force upwards = Gravitational force downwards)

- 6. A 0.310-gram object with a charge of -1.80 μ C is suspended against gravity between two horizontal parallel plates. The plates have a voltage of 150. V across them, what is their separation? Which plate is the positive plate? (8.88 cm, top)
- 7. A 0.980-gram object with a charge of $+0.780 \,\mu\text{C}$ is suspended against gravity between two horizontal parallel plates that are 3.80 cm apart. What voltage does this require, and which plate is the positive plate? (468 V, bottom)
- 8. A 0.450-gram object is suspended against gravity between two horizontal parallel plates that are 1.50 cm apart. What charge does the object have if this requires 13.0 V to accomplish? If the top plate is negative, is the charge positive or negative? $(5.09 \, \mu C, positive)$
- 9. An object with a charge of $+4.50 \,\mu\text{C}$ is suspended against gravity between two horizontal parallel plates that are 1.4 cm apart. What mass does the object have if this requires 260. V to accomplish? Which plate is positive, the top or the bottom? (8.52 g, bottom)
- 10. A 2.30 gram object is suspended against gravity between two horizontal parallel plates that are 3.80 cm apart. What charge does the object have if this requires 75.0 V to accomplish? If the positive plate is on the top, is the charge positive or negative? (11.4 μC (1.14x10⁻⁵ C), negative)

$$F_G = G \frac{m_1 m_2}{r^2}$$
 $F_E = k \frac{q_1 q_2}{r^2}$ - Inverse square force laws

- 11. At what distance from the center of a 3.40 μ C charge is there a force of 7.80 N on a 1.10 μ C charge? Is it attracted or repelled? (6.57 cm, repelled)
- 12. A -3.80 μ C charge is attracted with a force of 45.0 N to another charge that is 56.0 cm away. What is the other charge? Is it positive or negative? (413 μ C(4.13x10⁴ C), positive)
- 13. At what distance from the center of a 5.97x10²⁴ kg planet is the force of attraction on a 6.00 kg mass 23.0 N (1.02x10⁷ m)
- 14. On the surface of a 7.30×10^6 m radius planet, there is a 57.0 N force on a 5.10 kg mass. What is the planet's mass? $(8.93 \times 10^{24} \text{ kg})$
- 15. Two point charges have a force of attraction of 140. N when they are 12.0 m away from each other. What is their force of attraction when they are 17.0 m away from each other? (69.8 N)
- 16. The force of gravity between two spherical masses is 5.90×10^{-12} N when their centers are separated by 1.80 m. If they are moved so that the force of attraction is 7.80×10^{-12} N, what is their new separation? (1.57 m)
- 17. Two point charges have a force of repulsion of 56.0~N when they are 45.0~cm from each other. At what separation is the force 98.0~N? (34.0~cm)
- 18. The force of gravity between two spherical masses is $6.00x10^{-11}$ N when their centers are separated by 1.10 m. If they are moved so that their separation is 3.20 m, what is the force of attraction? (7.09x10⁻¹² N)
- 19. Two point charges have a force of attraction of 160. N when they are 2.50 m apart. If they are moved so their new force of attraction is 240. N, what is their separation? (2.04 m)
- 20. Two point masses are attracted by a force of 1.20×10^{-12} N when they are 45.0 cm apart. If they are moved so that they are 150.0 cm apart, what is their new force of attraction? (1.08×10⁻¹³ N)

21. Linear Arrays:

A. Find the net force and direction on the charges (A: 72.4 N right, B: 111 N left, C: 39.0 N right)

(A) 23.0 cm

B

35.0 cm

(C)

-17.0 μC

+18.0 μC

 $+45.0~\mu C$

B. Find the net force and direction on the charges: (A: 12.2 N left, B: 91.1 N right, C: 78.9 N left)

A

18.0 cm

42.0 cm

 \bigcirc

 $+11.0~\mu C$ $+12.0~\mu C$

-89.0 μC

C. Find the net force and direction on the masses: (A: 39.2 N right, B: 3.10 N left, C: 36.1 N left)

A

5.90 m

3.10 m

 $9.80x10^6 \text{ kg}$

 $1.10 \times 10^6 \text{ kg}$

 $2.30x10^6 \text{ kg}$

D. Find the net force and direction on the masses: (A: 10.5 N right, B: 11.9 N right, 22.4 N left)

(A)

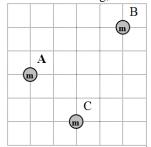
6.50 m

9.70 m

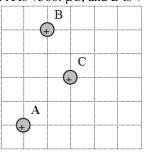
 $1.40x10^6 \, kg$

 $3.50x10^6 \, kg$

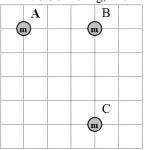
 $7.90x10^6 \text{ kg}$


22. Non-Linear Arrays:

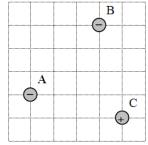
Each grid line is a meter. Calculate the force on object A. Draw the force vector and label its magnitude and direction.


(200. N up and left at 61.6° above the x-axis)

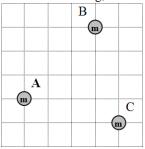
B. A is 1.60x10⁶ kg, and B is 2.10x10⁶ kg, and C is 6.30x10⁶ kg.


(88.2 N right and down at 38.1° below the x-axis)

C. A is +560. μ C, and B is +780. μ C, and C is +450. μ C.


(496 N down and left at 58.9° below the x-axis)

D. A is 3.50×10^6 kg, and B is 2.20×10^6 kg, and C is 8.10×10^6 kg.


(119 N right and down at 30.6° below the x-axis)

E. A is -680. μ C, and B is -890. μ C, and C is +670. μ C.

(273 N left and up at 85.8° above the x-axis)

F. A is 1.50x10⁶ kg, and B is 7.30x10⁶ kg, and C is 5.10x10⁶ kg.

(61.6 N right and up at 20.3° above the x-axis)