Diffraction Questions from 12.2A

Young's Double Slit:

1. Two slits are separated by a small distance and are illuminated by 575 nm light. The interference pattern has bright fringes that are 1.13 cm apart on a screen that is 2.46 m away. a. What distance separates the two slits? $(0.125 \mathrm{~mm}) \mathrm{b}$. What is the angle between the second order and the fifth order fringes on one side? $\left(0.790^{\circ}\right)$
2. Two slits are separated by a distance of 0.245 mm and are illuminated by monochromatic light. The interference pattern has bright fringes separated by 1.41 cm and falls on a screen that is 5.59 m away. a. What is the wavelength of light? (618 nm) b. What is the distance on the screen between the central maximum and the fourth order maximum? $(5.64 \mathrm{~cm})$
3. Two slits are separated by a distance of 0.251 mm and are illuminated by 647 nm light. The interference pattern has fringes separated by a distance of 1.52 cm on a screen some distance away. a. What is the distance to the screen? $(5.90 \mathrm{~m}) \mathrm{b}$. What is the angle between the central maximum and the fourth order maximum? $\left(0.591^{\circ}\right)$
4. Two slits are separated by a small distance and are illuminated by 478 nm light. The interference pattern has fringes separated by 1.65 cm on a screen that is 3.25 m away. a. What distance separates the slits? $\left(9.42 \times 10^{-5} \mathrm{~m}\right) \mathrm{b}$. What is the distance on the screen between the first order and the third order maximum on one side? $(3.30 \mathrm{~cm})$
5. Two slits are separated by a distance of 0.280 mm and are illuminated by 652 nm light. The interference pattern falls on a screen that is 2.06 m away. a. What distance separates the fringes on the screen? $(0.480 \mathrm{~cm}) \mathrm{b}$. What is the angle between the central maximum and the second order maximum? $\left(0.267^{\circ}\right)$

Single Slit:

6. A single slit is illuminated by $460 . \mathrm{nm}$ light. The angular width of the central maximum is 1.20°. What is the width of the slit? (0.0439 mm)
7. A single slit has a width of 0.0680 mm and is illuminated by 715 nm light. What is the angle between the center of the central maximum, and the second minimum on one side? $\left(1.20^{\circ}\right)$
8. A single slit has width of 0.0287 mm . There is an angle of 2.15° separating the center of the first maximum on one side with the center of the first maximum on the other side. What is the wavelength of light? (359 nm)
9. A single slit is illuminated by 656 nm light, and there is a 3.10° angle between the second maximum on one side, and the center of the central maximum. What is the width of the slit? $(0.0303 \mathrm{~mm})$
10. A single slit has a width of 0.0243 mm , and there is a angle of 2.61° between the first maximum on one side, and the third minimum on the same side. What is the wavelength of the light? (738 nm)
11. A single slit has a width of 0.130 mm and is illuminated by monochromatic light. A screen 1.51 m away has a pattern where the center of the central maximum is separated from the center of the next maximum by a distance of 0.857 cm . What is the wavelength of light? (492 nm)
12. A single slit has a width of 0.113 mm and is illuminated by 635 nm light. The interference pattern is projected on a screen that is 4.51 m away. What is the distance on the screen from the center of the first maximum on the left side to the center of the first maximum on right side? $(7.60 \mathrm{~cm})$
13. A single slit has a width of 0.0748 mm and is illuminated by 524 nm light. A screen some distance away has a central maximum pattern that is 3.24 cm wide. What is the distance to the screen? $(2.31 \mathrm{~m})$
14. A single slit is illuminated by 524 nm light. A screen 4.20 m away has a central maximum pattern where the first minimum on one side is separated from the second by a distance of 1.26 cm . What is the width of the slit? $\left(1.75 \times 10^{-4} \mathrm{~m}\right)$
15. A single slit has a width of 0.152 mm and is illuminated by 740 nm light. The interference pattern is projected on a screen that is 2.57 m away. What is the distance on the screen from the center of the central maximum to the center of the second maximum on one side? (3.13 cm)

Diffraction Gratings:

16. A diffraction grating has 6126 lines per cm . It is illuminated by a monochromatic light, and the central maximum and third order fringe are separated by 31.0°. What is the wavelength of the light? (280 nm)
17. A diffraction grating has 3852 lines per cm . It is illuminated by 398 nm light. What angle separates the second order and the fourth order fringes? (20.0°)
18. A diffraction grating is illuminated by 428 nm light. There is an angle of 3.58° between the central maximum and the second order fringe on one side. How many lines per cm does the grating have? (729 lines $/ \mathrm{cm}$)
19. A diffraction grating has 2083 lines $/ \mathrm{cm}$. It is illuminated by a monochromatic light beam. There is an angular separation of 8.13° between the central maximum and the first order fringe. What is the wavelength of light? (679 nm)
20. A diffraction grating is illuminated by a 596 nm light. There is an angle of 38.2° between the central maximum and the third order fringe on one side. How many lines per cm does the grating have? (3459 lines $/ \mathrm{cm}$)
