Orbit and Gravity Questions from A5.3 Use the value of $G = 6.67 \times 10^{-11} \text{ Nm}^2/\text{kg}^2$

Use the value of $G = 6.6/X10$ Nm /kg					
38,600 N	1. a. What is the force of gravity between a 6.50×10^{16} kg asteroid and a 18,700 kg spaceship if their centers are				
44.5 kg	1,450 m distant?				
$2.53 \times 10^{24} \text{ kg}$	b. The centers of two lead spheres are separated by 6.70 m. If one sphere has a mass of 56.0 kg, and there is an				
$2.43 \times 10^{\circ} \text{ s}$	attractive force of 3.70x10 ⁻⁹ N, what is the mass of the other sphere?				
	c. You are orbiting the planet Qwrmczl at a radius of 1.45×10^7 m, at a velocity of 3410 m/s. What is its mass?				
	d. What is the period of an orbit that is 3.90×10^8 m from earth's center? (m = 5.97×10^{24} kg)				
7.68 N	2. a. What is the force of gravity between a 2.60×10^{13} kg asteroid and a 56,100 kg spaceship if their centers are				
175 m	3,560 m distant?				
$5.31 \times 10^{23} \text{ kg}$	b. What distance separates the centers of two lead spheres if one has a mass of 123 kg, the other a mass of 12.0 kg				
5.38x10 ¹¹ m	and there is an attractive force of 3.20×10^{-12} N?				
	c. You are orbiting the planet Wnnydrydrl at a radius of 7.80×10^6 m, and a period of 2.30×10^4 seconds. What is				
	the planet's mass?				
	d. What is the radius of an orbit around earth (m = 5.97×10^{24} kg) that has an orbital velocity of 27.2 m/s?				
3,980 N	3. a. What is the force of gravity between a 2.10×10^{15} kg asteroid and a 23,800 kg spaceship if their centers are				
2.84 kg 2.51x10 ⁸ m 4.89x10 ⁵ s	915 m distant?				
	b. The centers of two lead spheres are separated by 1.35 m. If one sphere has a mass of 125 kg, and there is an				
	attractive force of 1.30×10^{-8} N, what is the mass of the other sphere?				
	c. What is the radius of the orbit that has an orbital velocity of 1260 m/s around the earth? (m = 5.97×10^{24} kg)				
	d. What is the period of an orbit with a radius of 3.10×10^7 m around the moon? (Moon's mass is 7.36×10^{22} kg)				
72.4 N	4. a. What is the force of gravity between a 2.30×10^{14} kg asteroid and a 12,700 kg spaceship if their centers are				
1.67 m 2.92x10 ⁵ s 7.54x10 ²⁵ kg	1,640 m distant?				
	b. What distance separates the centers of two lead spheres if one has a mass of 215 kg, the other a mass of 125 kg				
	and there is an attractive force of 6.40×10^{-7} N?				
	c. What is the period of the orbit that has a radius of 9.50×10^7 m around the earth? (m = 5.97×10^{24} kg)				
	d. You orbit the planet Kssnndnnwrr at a radius of 8.20×10^7 m with a velocity of 7830 m/s. What is its mass?				
40.0 N	5. a. What is the force of gravity between a 23.6×10^{12} kg asteroid and a 14,600 kg spaceship if their centers are				
9.60 kg	758 m distant?				
986 m/s	b. The centers of two lead spheres are separated by 4.90 m. If one sphere has a mass of 45.0 kg, and there is an				
2.15x10 ²³ kg	attractive force of 1.20×10^{-9} N, what is the mass of the other sphere?				
	c. What is the velocity of the orbit that has a radius of 4.10×10^8 m around the earth? (m = 5.97×10^{24} kg)				
	d. You are in an orbit with a radius of 8.50×10^7 m and a period of 1.30×10^6 s around the planet Rjxnstdnnr. What				
	is its mass?				

Questions:

Answers:

C				
Slow down at the x:	Speed up at the x:	Slow down at the x:	Speed up at the x-	
Slow down at the x:	Speed up at the x:	Slow down at the x:	Speed up at the x:	
Slow down at the x:	Speed up at the x:	Slow down at the x:	Speed up at the x:	

In general, speeding up brings the far side <u>out</u>, slowing down brings the far side <u>in</u>. Speeding up brings the entire trajectory <u>outside</u> the old one, and slowing down brings entire trajectory <u>inside</u> the old one.