**Pulleys** Directions: Show the solutions (i.e. your work) to these on a separate sheet of paper.

| Directions: Show the solutions (i.e. your work) to these on a separate sheet of paper.                                       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|------------------------------------------------------------------------------------------------------------------------------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| a) 44.4 N, 1.92 m/s/s<br>b) 9.81 N, 0.00382 m/s <sup>2</sup><br>c) 9.79 N, 9.79 m/s/s<br>d) 16.6 kg<br>e) 47.8 N, 1.32 m/s/s | A<br>B | <ul> <li>5. The plane and pulley are frictionless for a) – d). e) has a bit o' friction <ul> <li>a) If A has a mass of 23.1 kg, and B has a mass of 5.63 kg, what is the tension in the string, and the acceleration of the system?</li> <li>b) If A has a mass of 2567 kg, and B has a mass of 1.00 kg, what is the tension in the string, and the acceleration of the system?</li> <li>c) If A has a mass of 1.00 kg, and B has a mass of 500. kg, what is the tension in the string, and the acceleration of the system?</li> <li>d) If A has a mass of 35.0 kg, What does B need to be so that the system has an acceleration of 3.15 m/s/s?</li> <li>e) Answer part a) with a coefficient of friction of 0.0759 between block A and the plane.</li> </ul> </li> </ul> |
| a) 2.8 m/s/s, 35 N<br>b) -0.48 m/s/s, 18 N<br>c) 3.55 kg<br>d) 7.5 kg                                                        | A      | <ul> <li>6. The plane and pulley are frictionless.</li> <li>a) If A and B both have a mass of 5.0 kg, and the plane makes an angle of 25° with the horizontal, what is the acceleration and the tension in the cable?</li> <li>b) Solve as in problem a), but give A a mass of 5.0 kg, and B a mass of 1.78 kg.</li> <li>c) Suppose A has a mass of 4.51 kg, and accelerates from rest 3.27 m up the ramp in 1.81 seconds. What must the mass of B be? (use 25.0°)</li> <li>d) If the plane angle is 30° and A is 15 kg, what should the mass of B be to prevent acceleration?</li> </ul>                                                                                                                                                                                  |
| a) 6.43 m/s/s 14.6 N<br>b) .468 kg<br>c) 27.2 N                                                                              | В      | <ul> <li>7. The plane and pulley are frictionless, and the plane makes an angle of 21.0° with horizontal.</li> <li>a) If A has a mass of 5.00 kg, and B 4.30 kg, what are the acceleration and the tension in the cable?</li> <li>b) If A has a mass of 3.12 kg, and the tension in the cable is 2.56 N, what must the mass of B be?</li> <li>c) Using the masses from part a), suppose you observed an acceleration of only 3.50 m/s/s. What frictional force must exist between A and the plane? (assume the plane is not frictionless)</li> </ul>                                                                                                                                                                                                                       |